
Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
MAIN

Aglet Modula-2 PPC

Beta release (15.2.2012)
compiler v3.2 (13.2.2012)

Mar 4, 2012

Overview Overview
Requirements Requirements
Installation Installation

Modula-2 Language M2_Language

Command Line Tutorial CLI_Tutorial
Aglet Implementation Aglet_Implementation
Example Programs M2_Examples

IDE Tutorial IDE_Tutorial
M2IDE M2_IDE

Release History Version_History

Modula-2 Syntax ISO Modula-2 Syntax

Tom Breeden
tmb@virginia.edu

AmigaGuide(R)
.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Overview

 Next section: Requirements
Aglet Modula-2 PPC Overview

Introduction Introduction
Features Features
Limits Limits
Known Bugs Bugs
Future Future

This is a Beta release of a native PPC Modula-2 compiler for Amiga OS4. Aglet M2 PPC
v3.2 Beta (15.2.2012) implements much of the ISO Modula-2 base standard.

I make no representations about the suitability of this software for any
purpose. It is provided "as is" without express or implied warranty.

This is copyrighted freeware being distributed "as-is". I hope it can be useful for
anyone interested in developing new generation Amiga software with a Wirthian
language.

Even though this is a beta release, I believe the package is in a usable condition. I have
successfully built a number of non-trivial programs with it:

> Mod2 compiles itself.
> Mod2Lnk , the pre-Linker used for building programs
> The included M2IDE development environment
> IDLTm2 , an IDLTool analogue for producing Interface DEFINITION modules
> A test generator program, tgM2 , for Modula-2
> A TestManager program for the above to handle the creation, compiling, linking,
and analysis of results for lists of tgM2 test modules.

> The GuideMaker program on OS4Depot
> The LoggerWindow program on OS4Depot
> The Capture Programmer's Challenge Game.

The compiler is, of course, not competitive with GCC for PPC code optimization, but it
does a good job of creating correct machine code for a correct Modula-2 program.

Modula-2 is certainly a relatively "obscure" (at least in the U.S) language, but far from
a dead one. A number of compilers are available without cost for different platforms.
There is an ISO standard and most newer compilers, including Aglet M2 PPC , cleave
closely enough to the standard to achieve good portability.

M2 does offer some things you don't get with C:

A better approach to building modular software - You don't have to spend 50% of

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

your development time figuring out why your "make" file does not work. :)

A cleaner, simpler language than C, offering a better type system, more rational
array handling, much better design for modular programming supporting Abstract
Data Types and much greater opportunity to change module implementations
without propagating complexity and uncertainty.

Included Amiga-oriented support modules designed to get you effectively using
Intuition, Reaction, etc, without having to become an expert in all the details -
Direct calls to almost all Amiga Libraries are available, but intermediate modules
from Aglet like "SimpleGUI", "SimpleRequesters", "SimpleImageHander",
"SimpleRexx", and "AmigaTimer" expose a straightforward interface to common
needs.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Introduction

 Section head: Overview
 Next subsection: Features

Aglet Modula-2 PPC Introduction

Aglet M2 PPC is a complete rewrite of my previous M68K compiler. The compiler has
been redesigned as a front-end/back-end compiler with intermediate code production
in order to open the potential for increased optimization and portability. Code is
generated compatible to the SYSV ABI for PPC.

It implements much of the ISO 10514 Modula-2 Base Standard , and (most of) the
specified ISO standard libraries have been provided. The AOS4 SDK is represented by
modules containing Amiga System Library definitions and interfaces.

PPC native code is written out as an assembler language file, which is processed by as,
the GNU assembler delivered with the AOS4 SDK. A M2 pre-linker pulls together all
the modules used by your program and implements inter-module version checking,
then invokes ld to create the executable.

The compiler has bootstrapped itself, so most modules compile very quickly. It does not
yet do much in the way of optimization, but I think it offers simpler way to get into
producing sophisticated native Amiga OS4 programs than gcc .

It has roots in the Benchmark Modula-2 compiler (which in turn has its roots in the
ETH one-pass compiler for the M68000). Many thanks to Jim Olinger of Armadillo
Computing, with whom I worked for a number of years on the AmigaOS library support
for Benchmark Modula-2 . Though Jim is no longer active in Amiga matters, he
expresses his support for this new M2 project building on what he provided the Amiga
community in Benchmark Modula-2 .

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Features

 Section head: Overview
 Next subsection: Limits

Aglet Modula-2 Features

The most important goal for Aglet M2 PPC has been to provide a modern Amiga M2
compiler consistent with the ISO Modula-2 Standard. There is still a good deal to be
done before it can be called ISO conforming, but much has been implemented.

For an overview of the Modula-2 language, see the section M2_Language. Notable
language ISO additions which were not in Niklaus Wirth's Programming in Modula-2
document include:

> module termination (FINALLY section)
> an exception handling facility (EXCEPT section)
> the ISO standard library modules.

The compiler and pre-linker can be used from the CLI, but Aglet M2 PPC also comes
with a basic IDE: M2IDE organizes compile order dependencies for you, presents a
GUI for one button compiling and linking, integrates with a text editor, and has more
features useful for larger projects.

Aglet M2 PPC comes with Definition modules for direct calls to Amiga Libraries in
AOS4, with parameters just as described in the SDK's AutoDocs (though in many case
with improved item typing).

The ISO standard library provides platform independent modules supporting IO,
Strings and number/string conversions, Math, multiprocessing/threading, and reading
the system clock.

I've also included, as part of Aglet M2 PPC , a fairly extensive set of Aglet support
modules, both Amiga specific and of more generic interest. eg,

- A number of Amiga-specific modules supporting a higher level usage of things
like the Timer Device, Font access, ARexx, Amiga CLI argument processing,
separate Amiga process startup, etc.

- A mixed bag of generally useful programming support modules for things such as
> Dynamic Strings
> Binary Trees, Hash Tables
> QuickSort, Binary Search
> Regular Expressions
> Matrix Operations, Simultaneous Equations
> Huge Integers

- A module package, "SimpleGui", intended to simplify the use of Reaction without
sacrificing capabilities.

- A module package, "SimpleGraphics", providing 2D drawing and graphing calls
into Intuition windows and regions within windows.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Limits

 Section head: Overview
 Next subsection: Bugs

Limitations

See also: Bugs LowLevel ISO

Compiler

In general, limits are imposed only by the amount of memory available and the 32
bit size of the computer word used by the compiler. Some other details:

size of procedure/Module -> Current limiting factor is how many
live vars a proc creates (1024).

length of string literals -> One line of text
number of dimensions of open arrays -> 1
number of enumeration literals -> 256
number of coroutines -> 0 (Coroutines NYI)
size of FOR loop -> 32K bytes (16 bit offset branches)

ISO features not yet implemented:
64 bit INTEGER/CARDINAL
tagged NEW/DISPOSE/TSIZE
structured type constructors
literal string append operations
multidimensional open arrays
dynamic modules
type COMPLEX

Linker

No facilities yet to support Amiga Library creation.
Linking of modules into object file archives not yet implemented.

IDE

AOS File Notification not yet used for source change status.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Bugs

 Section head: Overview
 Next subsection: Future

Known Problems

Open arrays of SYSTEM types
Parameters which are open arrays of SYSTEM types (e.g., ARRAY OF WORD,
ARRAY OF LOC) are not yet correctly implemented, eg. HIGH() may not be correct
on these.

Grim Reaper during compile
Illegal memory accesses with incorrect source code may still occur. In most cases
these are benign and you can continue with the compile after the GR by simply
choosing "Continue Program". If not, see the notes in VerboseCompile.

Wrong source position reported for some errors
The error position reported for parameter syntax errors always points to the
closing parenthesis, rather than to the parameter that caused the error.

Most Aglet support modules are not thread-safe
The Storage module is an exception, so threads (eg started from the ISO Processes
module) can allocate and deallocate memory safely.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Future

 Section head: Overview
Plans

AmiUpdate
After Release 3.2, I plan to provide more frequent, smaller fixes and updates via
AmiUpdate (www.amiupdate.net).

Fix Known Bugs and Awkwardnesses
Bugs

Compiler Robustness
The compiler does a good job of parsing correct M2 source code, but unfortunately
there are currently still some circumstances in which a syntax error will evoke a
Grim Reaper. Most of these are innocuous NIL dereferences so that the compiler
can be continued from the GR, but all need to be fixed.

Code Generation
The compiler currently does only a little work attempting to improve the baseline
correct (hopefully) intermediate and machine code. There is lots of work to be
done improving this.

Modules as Amiga Libraries
To be done.

Modules as Static Libraries
This could decrease executable size from 0% to 20%, depending on the modules
used.

ISO compatibility
Structured Constants
SYSTEM type parameters ISO-compliant
Dynamic Modules
Tagged Allocate/Deallocate
ISO-compliant CAST
Multi-Dimensional Open Arrays

Overflow and Range Checking
Currently, the compiler does implement run-time overflow and range checking, but
not consistently, ie, there remain many places where such checking could occur
but, at this time, does not get inserted.

Object Oriented ISO Extensions
The ISO group also specified a standard for adding classes with inheritance to the
base standard. I am quite interested in implementing this.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Requirements

 Prev section: Overview
 Next section: Installation

Aglet M2 Requirements

Machine Resources

> 26MB disk space is required for the entire contents (7MB less if the module
source archive is not selected.

> My development has been done on an 800MHz AmigaOne XE and a 666MHz
Sam440ep with 512MB memory.

For Compiler and Linker

> Amiga OS4.x up-to-date Installation. Development work is being done on AOS 4.1
update4 on a Sam440-flex and an AmigaOne.

> Hyperion SDK Installed
- SDK should be v53.8 or later. Development work is being done on SDK 53.20.
- "as" and "ld" are called by the M2 compiler and linker, and must be accessible

by the path "SDK:gcc/bin/" (as they will be after the usual SDK install).
- Transcendental and sqrt functions are implemented via the C library

SDK:clib2/lib/libm.a (or by the NewLib library SOBJS:libc.so).

The SDK is freely available at the Hyperion web site, http://www.hyperion-
entertainment.biz/, in the "Downloads" section.

> A directory for the Aglet M2 package (~20MB)
- e.g. "Work:AgletV3". I suggest that an Assign for this directory be created as

"AGV3:".

> multi ASSIGN of "M2Lv3:" for supplied library modules

> "T:" assigned to a nice location for temporary files.

> "PIPE:" device accessible.

The install will create an assign script you can insert or call from s:user-startup:
;---
; M2-Assigns.s Assigns for Aglet Modula-2
;
assign agv3: ; <directory in which you installed Aglet M2 PPC>
;
assign m2lv3: agv3:system agv3:amiga agv3:iso agv3:reaction
agv3:sysmod agv3:experimental
;

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

path agv3: ADD
LOADWB NEWPATH ; <remove if the script is run in user-startup>
;---

For IDE

> Arexx up and running

> An Arexx capable Editor
A "plugin" is currently provided for these editors

GoldEd (tested on v7.23)
TurboText (tested on v2.0)
CygnusEd (tested on v4.20)
MicroGoldEd (probably works, is untested)
Annotate (tested on v2.7.5 and v2.7.7)

Others may be made available by implementing the ARexx commands in
M2IDEEdtCmds.def following the patterns of the sources of the above plugins.
Send me a message and I may be able to do it fairly quickly.

.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Installation

 Prev section: Requirements
 Next section: M2_Language

Aglet M2 Installation

To Install:

Unpack the AgletM2PPC.lha file into a temporary directory. This unpacks to three
files, AgletM2PPCBin.lha, AgletM2PPCModSrc.lha, and an AmigaDOS script,
DoInstallAgletM2PPC.s.

EXECUTE the script and it will allow you to choose a parent directory in which it
will create a directory named "AgletV3" and distribute the LHA contents into a
directory structure underneath.

It will also create a file, "m2-Assigns.s", which will do the required ASSIGN,
"M2Lv3:" (see Requirements). This assign is used by the compiler to find the
standard support modules' symbol and object files. You may want to add a call to
this script from S:user-startup.

Other things you will have to do are:

> Put the directory where the compiler executables were placed into your shell
path.
e.g., Use the PATH ADD shell command. This directory was called "AGV3:" in
Requirements so it would be, "PATH AGV3: ADD". You may want to add this
command into S:shell-startup.

> If you don't have GoldEd as your editor, rename one of the other supported
editor "front" programs to "EdtFront".
As of v0.3 (27.2.2010) you can instead explicitly give the name of your editor
interface program. Use the CLI -EDITOR switch, eg. "-Editor
PROGDIR:cedfront"

> If you do have a the GoldEd (and the Cubic package), do visit OS4 Depot and
download Frank Ruthe's materials for a very nice extended integration of M2
into GoldEd 8. Filed as "development/ide/agletm2cubic.lha" It includes a very
detailed description of how to setup the various features of GoldEd for this
purpose.
URL: http://os4depot.net/share/development/ide/agletm2cubic_lha.readme

> Frank Ruthe has also designed some very nice icons for AgletM2 and given
permission for me to include these with this distribution. You may want to set
these as your system default icons for M2 source files and M2IDE project files.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

 -- Notes --

The executables are Mod2, Mod2Lnk, M2Err, IDLTm2 for the Compiler/Linker, and
M2IDE, WindowLogger, EdtFront for the IDE.

The IDE communicates with your selected editor via an intermediate program, named
"EdtFront" (unless the -EDITOR switch was used). One of the supplied executables
(GedFront, AnnFront, CedFront, or TtxFront) should be copied as file "EdtFront".
Sources for these programs are supplied in case you want to write one for a different
editor.

The "Name List" file, "RegMods.nl", is used by M2IDE to exclude processing of the
standard support modules from your project. This leaves only the modules you are
working on for a specific project in the M2IDE modules window, and avoids touching
the standard support modules.

A GoldEd syntax file for Modula-2 syntax coloring is also provided. It goes into
GoldEd/add-ons/Modula2/Syntax/Dictionaries. A similar syntax file suitable for
Annotate is also provided.

A few test and example program sources are unpacked into the "/Examples/"
subdirectory.

.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
M2_Language

 Prev section: Installation
 Next section: CLI_Tutorial

The Modula-2 Language

M2 Description Modula-2
M2 Syntax M2_Syntax
Module Consistency ModuleKeys
Module Init and Term InitTerm
Exceptions Exceptions

ISO M2 Standard ISO
ISO Standard Libs ISOMods
ISO Examples ISOExamples
Obj Oriented M2 OO_Extensions

M2 Links M2_Links

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Modula-2

 Section head: M2_Language
Modula-2 Description

Modula-2 was designed and released in the '80s by Niklaus Wirth as the "serious"
language for large application and system software to follow up on the "teaching"
language, Pascal, that he had worked on in the '60s and '70s.

The major design idea is to foster reduction in complexity via "information hiding"
while at the same time providing the programmer with all necessary tools for low level
programming within the framework of a strongly typed language.

The public interface of a software module (which is the DEFINITION MODULE) is
published separately from the code itself (which is the IMPLEMENTATION
MODULE). If changes, or even major revisions of the code, are limited to the
Implementation module, they need not propagate to other code that uses your module.
Client code can see only what is in the Definition module.

Modula-2 thus provides an ideal platform for "Abstract Data Types": an ADT is a
programmer-defined object type along with a collection of functions providing the
complete set of allowable operations on the objects of that type. The ADT approach
fosters programming with objects, though some important features of true Object
Oriented Programming are missing: ADT objects themselves have no initialization and
termination routines (though their Modules do), and there are no inheritance
relationships.

In the 90's, an ISO was developed and published (ISO/IEC 10154-1) which defined the
language in detail, and added a few things without materially changing Modula-2's
basic design and elegance. Notably, this included a module termination routine, a well
defined mechanism for exception trapping and recovery, and a ISOMods that all
implementations are expected to provide.

In addition, two standard extensions defining how a language implementer should, if
desired, provide an extended language in two areas: One defined language additions to
provide true Object Oriented Modula-2 (with classes, inheritance, and garbage
collection) . The other was a Generic Programming Extension, to provide template-
like modules that still maintain type checking safety.

On the web, check out M2_Links.

.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
M2_Syntax

 Section head: M2_Language
Modula-2 Syntax

The syntax of Modula-2 will be fairly familiar to anyone who knows a bit about Pascal.
Like C and Pascal, M2 is a block structured declarative programming language. Unlike
them, it was designed from the beginning to support modular programming and
information hiding.

The best resource for learning to use Modula-2 is an on-line textbook, "Modula-2:
Abstractions for Data and Programming Structures - Modula-2 shareware textbook" by
Rick Sutcliffe. This can be found at http://www.csc.twu.ca/rsbook.

An explicit specification of the static syntax of M2 is included here: ISO Modula-2
Syntax.

The ISO/IEC 10514-1 document explicitly defining the ISO standard semantics is
available, for purchase, from ANSI in the United States, and other ISO organizations
elsewhere.

The GNU language backend is currently receiving a mostly ISO compliant Modula-2
front end. Though some differences exist based on its integration with the GNU
languages, documentation for this compiler is freely available.
(http://www.nongnu.org/gm2/homepage.html)

On the web, check out M2_Links.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
ModuleKeys

 Section head: M2_Language
Module Consistency

Definition modules are the public interfaces of the units that are put together to form a
M2 program, and Modula-2 will enforce that they be compiled in the order of
dependency and modification:

All Definition modules that a Definition module IMPORTs (ie, that it depends
upon) must be compiled before the Definition module itself. Thus, if a Definition
module is changed and re-compiled, all compiled modules that depend on (ie,
IMPORT) it need to be re-compiled.

Any change and re-compile of a Definition module results in a new unique key being
stored in the symbol file (#?.SBM) created for this Definition module compilation. Its
symbol file also contains the keys of each module that it imports, directly or indirectly.

So, the compiler can enforce this consistency in Definition modules when they are
combined into a program or Implementation module by using the keys to check that all
versions for each used Definition module in the #?.SBM files are the same.

For Example

Given that Definition module A imports Definition modules B and C, and that
Definition module B imports C. In the last compile of the following sequence the
compiler will detect an consistency error:

Compile C.def
Compile B.def
Modify C.def
Re-compile C.def
Compile A.def <- error emitted

The compiler will give a "keys of imported symbol files do not match" error. As the
public interface of C changed but B was compiled with the old version, you will
need to recompile B before the compile of A succeeds.

M2IDE

The included Integrated Development Environment for Aglet M2 PPC
automatically determines the correct order of compilation of Definition modules
within a project.

Implementation Modules

Because the implementation of the module is hidden, in general the order of
compilation of Program and Implementation modules does not matter so long as all
the Definition modules they use have been compiled appropriately.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

If not, however, similar consistency errors to that described above can be revealed
during compilation of Implementation modules.

It is also possible that some may not be detectable at compile time, but only when
two fairly independent modules are combined at link time.Mod2Lnk will report
any of these ModKeysLink.

One more potential problem that may show up at link-time stems from
ModKeysCircle between two implementation modules during module initialization.

.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
ModKeysLink

 Section head: M2_Language
Link-time Inconsistency

For Implementation modules, some import version inconsistencies are not detectable
by the compiler, but will be discoverable at link-time.

This may occur when the attempt is made to link together two independent
Implementation modules which were compiled with different versions of a third
Definition module.

The Aglet M2 PPC pre-linker, Mod2Lnk , will detect these and will output information
to help you determine which Implementation modules were compiled with the wrong
version.

For example, the following output from a development link of M2IDE, makes it clear
that the M2IDE#? and LoggerDefs Implementation modules have not been recompiled
with the up-to-date version of AmigaDOS2.def.

__

Module Key Mismatches

AmigaDOS2

 matching clients: AmigaDosInterfaces DebugIO SystemRTS
Assertions Debugging OSFile StdChans
LocaleInterfaces CharClass
ProcessesSupportSimpleScreens SysClock
VirtualTerminal MyTerminal
DirUtil2SimpleRexx DirUtil3 PipeIO
ProgramArgs ArgsSupport TextDisplays

 mismatching clients: M2IDErun M2IDEutils M2IDEapi LoggerDefs

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
ModKeysCircle

 Prev section: M2_Language
Circular Import Inconsistency

Mod2Lnk will attempt to arrange the order of initialization of a program's modules
such that when a module's init code is called, it can assume that the init code for all
modules that it IMPORTs will already have been called.

However, if two Implementation modules each import from the other's Definition
module, this is not possible, and there may be a problem.

The problem occurs when something in the initialization code of Module A requires
that the initialization code of Module B already be run, or vice versa, or both.

Usually, this requires a direct call from init code in one of the modules to a
initialization-sensitive procedure in the other module, however, indirect circularity can
exist and can be hard to spot just by perusing the code.

The compiler cannot detect this situation, but the Mod2Lnk can at least find all
Implementation modules that mutually import each other and emit a warning that the
error is possible (but makes no attempt to analyze module semantics to determine if it
occurs!).

For example, Mod2Lnk could output:

Warning MutualImport: IOLink IOChan
Warning MutualImport: SimpleGUIHidden SimpleGUI
Warning MutualImport: SimpleGUISupport SimpleGUI

Note that this is only a warning . The use of circular imports which aren't dependent
on module initialization order are not a problem. Further, if the initialization
dependency is only one-way between the two modules, the programmer can determine
which one initializes first by importing it textually before the other one in the Program
module.

If you get many of these warnings on a run of Mod2Lnk , it is probably a hint that the
design of your partition of the program into modules may not be ideal.

NOTE: Circular imports among Definition
 modules are a language error and will be

 detected as such by the compiler.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
InitTerm

 Section head: M2_Language
Module Initializations and Terminations

As specified in the ISO standard for Modula-2, any module can have a code section to
be executed on program termination, in addition to the one for initialization.

The module body code can be divided into two sections, the first containing the
initialization code and the second the termination code. A new language symbol,
FINALLY, was introduced to mark the beginning of the termination code.

Termination code will be called at program exit no matter what the reason for ending
the program: end of main module body, a HALT, or a trapped exception.

Modules' termination codes will be called in the opposite order from which their
initialization codes were called.

A module's termination code is called only once. A HALT or exception within its
termination code will end that one and continue with the next module's termination
code.

If program exit occurs during initialization before the main module is reached, modules
whose initialization code has not been entered will not be terminated. This
implementation will always call termination code, if any, for modules that have no
initialization code at all.

The standard system module TERMINATION is supported as a "built-in" standard
module. Its has two procedures:

PROCEDURE IsTerminating():BOOLEAN;
PROCEDURE HasHalted():BOOLEAN;

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Exceptions

 Section head: M2_Language
Exceptions Support

The general exception model allows an EXCEPT section at the end of module init
sections, module term sections, and procedure bodies.

Upon an exception, control transfers to the start of the last activated EXCEPT block.
An exception block becomes activated when its associated code block is entered, and
deactivated on the code block exit.

A RETRY statement within the exception block will clear the exception status and
restart the procedure (or module init/term code) from the beginning.

A RETURN statement within the exception block will clear the exception status and
exit from the procedure or module body.

If neither statement is executed within the exception block (ie. the processing "runs off
the end"), the exception state remains raised and the previously active exception block
is entered. If there is none, the program ends via the runtime system default exception
handler.

Some exceptions are pre-defined since they are specified in one of the Standard ISO
Modules. User written modules can also define their own exceptions via the standard
module EXCEPTIONS. User defined exceptions are sent to the exception handler
cascade by a call to the EXCEPTIONS.Raise() procedure.

In addition, there are a set of "language exceptions" raised by the operating system or
by run-time checks inserted by the compiler. Standard module M2EXCEPTION
defines an enumeration of these so that they can be handled, if desired, in your
module's EXCEPT section:

(indexException, rangeException, caseSelectException,
invalidLocation, functionException, wholeValueException,
wholeDivException, realValueException, realDivException,
complexValueException, complexDivException, protException,
sysException, coException, exException)

The compiler switches "-rngchk" and "-ovflchk" may determine, in many instances,
where or whether most of the language exception situations will be detected at run
time.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
ISO

 Section head: M2_Language
ISO Modula-2 Standard

The best resource for learning to use ISO Modula-2 is an on-line textbook, "Modula-2:
Abstractions for Data and Programming Structures - Modula-2 shareware textbook" by
Rick Sutcliffe. This can be found at http://www.csc.twu.ca/rsbook.

ISO Modula-2 Syntax

Implemented Features in Aglet M2 PPC

- InitTerm - the FINALLY block
- Exceptions - the EXCEPT block
- FOR loop semantics - index variable must be local & unthreatened
- LENGTH function - for null delimited strings
- CAST() and VAL() differences - Type transfer "functions" removed
- SYSTEM.ADDADR().
- Storage module semantics - ALLOCATE failure returns NIL, not an

exception
- ISOMods

Not (yet) Implemented in Aglet M2 PPC

- Structured type constructors
- Multidimensional open arrays
- Dynamic modules
- COROUTINES module
- COMPLEX Type

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
ISOMods

 Section head: M2_Language
 Section head: Aglet_Implementation

ISO Standard Libraries

The Aglet M2 PPC implementation of these ISO standard modules was based on a a
set of sources provided (and programmed) by Richard Sutcliffe, Trinity Western
University, BC Canada (Portions coded by G. Tischer). I am extremely grateful for his
contribution.

Thanks to the WG13 and ISO/CS in Geneva, for making the text of all the definition
modules in the standard available.

Built-In Language Modules
 SYSTEM
 TERMINATION
 EXCEPTIONS
 M2EXCEPTION

StdIO Library - Logical Device (Channel) Access
 SeqFile Rewindable sequential files
 StreamFile Independent sequential data streams
 RndFile Random access files
 TermFile The console device
 ProgramArgs Program arguments as an IO channel

StdIO Library - Channel Input/Output
 TextIO Character and line IO
 WholeIO Integer and cardinal IO
 RealIO Real number IO
 LongIO Long real number IO
 RawIO Byte buffer IO

StdIO Library - Errors and Result Codes
 ChanConsts Open modes and open results on channels
 IOConsts Read operation result codes
 IOResult ReadResult() procedure

StdIO Library - Standard Channel Input/Output
 STextIO As above, but the channel is implied.
 SWholeIO "
 SRealIO "
 SLongIO "
 SRawIO "
 SIOResult "
 StdChans Set and get the actual channel used for Standard IO

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

StdIO Library - Device/Channel Association
 IOChan Lower level channel operations, channel exceptions
 IOLink Channel architecture for device association

Strings Library
 Strings Comparison, extraction, insertion, deletion
 CharClass Numeric, letter, control, whitespace

High Level Conversions
 WholeStr Integer/Cardinal to and from string
 RealStr " for Real, with float, fixed, engineering formatting
 ConvTypes Conversion error codes

Low Level Conversions
 WholeConv Useful for constructing conversion routines on Int/Card
 RealConv " for Reals
 LongConv " for Long Reals

Math Library
 RealMath Trig, log, square root, rounding functions
 LongMath " for LONGREAL
 LowReal Access to underlying properties of the REAL type
 LowLong " for LONGREAL

NOTE: Aglet's RealMath and LongMath use C libraries to implement their
procedures. You must use either "-libname SDK:clib2/lib/libm.a", to use
Clib2 or "-libname SOBJS:libc.so" to use C Newlib for Mod2Lnk to find
the implementation.

Multiprogramming/Threading
 Processes Implemented via AmigaDOS Processes
 Semaphores Provides mutual exclusion facilities for processes
 Coroutines <not yet implemented>

Etc
 SysClock Access to current date and time

-

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
ISOExamples

 Section head: M2_Language
ISO Examples

ISO_Exam1 Open an existing text file for reading
Read a text file

ISO_Exam2 Create a new file "safely"
Create a new file "destructively"

ISO_Exam3 Open an existing binary file to read it
Read a binary sequential file

ISO_Exam4 Open an existing random-access file for binary reading
Open or Create a random-access file for binary read/write

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
ISO_Exam1

 Section head: ISOExamples
ISO Examples-1

Open an existing text file to read it

| FROM IOChan IMPORT ChanId;
| FROM ChanConsts IMPORT ChanFlags, FlagSet, OpenResults;
| FROM SeqFile IMPORT OpenRead;
|
| VAR f :ChanId;
| oRes :OpenResults;
| ...
| OpenRead(f, "MyDev:MyPath/MyFile.ext", FlagSet{}, oRes);
| IF oRes <> opened THEN
| <error processing>
| ...
|__

Read a text file

See Aglet support module TextIOHelper as well.

| FROM IOConsts IMPORT ReadResults;
| FROM IOResult IMPORT ReadResult;
| FROM TextIO IMPORT ReadString, SkipLine;
|
| VAR OneLine :Str0.String132;
| rRes :ReadResults;
| ...
| ReadString(f, OneLine);
| rRes := ReadResult(f);
| WHILE rRes # endOfInput DO
| IF rRes = endOfLine THEN
| SkipLine(f);
| ELSE
| Assert(rRes = allRight, "Error encountered reading text file");
| <process the OneLine>
| ReadString(f, OneLine);
| END;
| rRes := ReadResult(f);
| END;
|__

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
ISO_Exam2

 Section head: ISOExamples
ISO Examples-2

Create a text file, erroring if there is an existing file of that name

| FROM IOChan IMPORT ChanId;
| FROM ChanConsts IMPORT ChanFlags, FlagSet, OpenResults;
| FROM SeqFile IMPORT OpenRead;
|
| VAR f :ChanId;
| oRes :OpenResults;
| ...
| OpenWrite(f, "MyDev:MyPath/MyFile.ext", FlagSet{}, oRes);
| IF oRes <> opened THEN
| <error processing>
| ...
|__

Create a text file, deleting any existing file of that name

| FROM IOChan IMPORT ChanId;
| FROM ChanConsts IMPORT ChanFlags, FlagSet, OpenResults;
| FROM SeqFile IMPORT OpenRead;
|
| VAR f :ChanId;
| oRes :OpenResults;
| ...
| OpenWrite(f, "MyDev:MyPath/MyFile.ext", FlagSet{oldFlag}, oRes);
| IF oRes <> opened THEN
| <error processing>
| ...
|__

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
ISO_Exam3

 Section head: ISOExamples
ISO Examples-3

Open an existing binary sequential file to read it

| FROM IOChan IMPORT ChanId;
| FROM ChanConsts IMPORT ChanFlags, FlagSet, OpenResults;
| FROM SeqFile IMPORT OpenRead;
|
| VAR f :ChanId;
| oRes :OpenResults;
| ...
| OpenRead(f, "MyDev:MyPath/MyFile.ext", FlagSet{rawFlag}, oRes);
| IF oRes <> opened THEN
| <error processing>
| ...
|__

Read a binary sequential file

| FROM IOConsts IMPORT ReadResults;
| FROM IOResult IMPORT ReadResult;
| FROM RawIO IMPORT Read;
|
| TYPE MyRecords = RECORD Code, Month, Day, Year:CARDINAL END;
| VAR OneRec :MyRecords;
| rRes :ReadResults;
| ...
| Read(f, OneRec);
| rRes := ReadResult(f);
| WHILE rRes # endOfInput DO
| IF rRes # allRight THEN
| <process the error>
| ELSE
| <process the OneRec>
| Read(f, OneRec);
| END;
| rRes := ReadResult(f);
| END;
|__

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
ISO_Exam4

 Section head: ISOExamples
ISO Examples-4

Open an existing random-access file for binary reading

| FROM IOChan IMPORT ChanId;
| FROM ChanConsts IMPORT ChanFlags, FlagSet, OpenResults;
| FROM RndFile IMPORT OpenOld;
|
| VAR f :ChanId;
| oRes :OpenResults;
| ...
| OpenOld(f, "MyDev:MyPath/MyFile.ext", FlagSet{}, oRes);
| IF oRes <> opened THEN
| <error processing>
| ...
|__

Open or Create a random-access file for binary read/write

| FROM IOChan IMPORT ChanId;
| FROM ChanConsts IMPORT ChanFlags, FlagSet, OpenResults;
| FROM RndFile IMPORT OpenOld;
|
| VAR f :ChanId;
| oRes :OpenResults;
| ...
| OpenOld(f, "MyDev:MyPath/MyFile.ext", FlagSet{writeFlag+oldFlag},
oRes);
| IF oRes <> opened THEN
| <error processing>
| ...
|__

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
OO_Extensions

 Section head: M2_Language
Object-Oriented Extensions

ISO also standardized an set of Object Oriented extensions for the base Modula-2
standard.

Hopefully, I will be able to implement these into the compiler classes in the foreseeable
future.

In this distribution of Aglet M2 PPC , most of the class implementation mechanics are
available via use of an accessory standard M2 module, Module_Obj. It does implement
true object-oriented classes (similar to BOOPSI). Unfortunately, the programmer-
required bookkeeping is a bit onerous, and I have used it only in one module,
SimpleGraphics.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
M2_Links

 Section head: M2_Language
Some Web Links for Modula-2 Info

http://www.csc.twu.ca/rsbook/index.html
Modula-2: Abstractions for Data and Programming Structures - Modula-2 shareware
textbook by Rick Sutcliffe

http://www.modula2.org/
A good source for info and source code. Modula-2 Org

http://www.arjay.bc.ca/Modula-2/m2faq.html
Modula-2 FAQ maintained by Rick Sutcliffe

http://freepages.modula2.org/
Modula-2 News Site

http://www.nongnu.org/gm2/homepage.html
GNU Modula-2 Home Page

http://www.modula2.org/adwm2/
A very nice freeware Windows M2 compiler system.

http://sc22wg13.twi.tudelft.nl/
ISO/IEC JTC1/ SC22 / WG13 Modula-2
 * ISO/IEC 10514-1:1996 - Modula-2 (Base Language) (published on 1996-06-01)
 * ISO/IEC 10514-2:1998 - Modula-2 (OO extension) (published on 1998-12-19)
 * ISO/IEC 10514-3:1998 - Modula-2 (Generic extension) (published on 1998-12-19)
The international standardization working group for the programming language
Modula-2.

http://www.ohloh.net/p/m2r10
Home site for a "next generation" Modula-2 language project.

Also, for discussions with other Modula-2 users you can subscribe to the Google group,
comp.lang.modula2 .

-

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
CLI_Tutorial

 Prev section: M2_Language
 Next section: Aglet_Implementation

[Use M2IDE instead of the CLI for "real" projects.]

Command Line Tutorial

The general procedure for building a program via the CLI interface is to iterate
through the following process:

> Design your program, using existing support Modules and/or constructing new
Definition Modules for the major program components.

> Write the main program Module.

> Write the Implementation modules for the new Definition modules you have
designed and written.

> Compile these Definition modules.

> Compile your main Program module and all your new Implementation modules.

> Link the program, eg, "mod2lnk MyProgram"

Note: Definition modules must be compiled in the logical order: all Definition modules
that a Definition module IMPORTs (ie, that it depends upon) must be compiled before
the Definition module itself. (Using M2IDE instead of the CLI to build your package
will insure that this requirement is met.)

Any change and re-compile of a Definition module results in a new unique key being
assigned to the symbol file (#?.SBM) created during compilation.

By reading these files, the compiler will check the Definition module dependencies,
direct and indirect, of your program and all its IMPORTed modules. It will declare an
error if it finds the dependency tree contains more than one version of the same
Definition module (ie, Definition modules were not compiled in the correct order).

In general, the order of compilation of Program and Implementation modules does not
matter, but see ModuleKeys for details on exceptions to this.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
SimpleCLI_Pgm

 Section Head: CLI_Tutorial
[Use M2IDE instead of the CLI for "real" projects.]

A Simple CLI-Built Example

Write your module source

Let's start with the time-honored example, but leave out a parenthesis in order to
make the compile more interesting. HelloWorld_err

Compile the module

Open a Shell window and invoke the compiler on your source program. You should
get compilation messages that look similar to the below.

|
| > mod2 HelloWorld.mod
|
| Aglet PPC Mod2 v3.1 Compiler Beta1 (13.2.2011)
| Copyright (c) 2004 by Thomas Breeden
|
| HelloWorld.mod
| <- M2Lv3:STextIO.SBM
|
| >>Errors in Source File!
|__

Run the M2Err program to see the error messages.

|
| > m2err
| M2Err Copyright © 2004 Tom Breeden
| LIST OF ERRORS FOUND IN FILE: HelloWorld.mod
| WriteString("Hello world!"; (* missing parenthesis *)
| WriteString("Hello world!"^
| line: 10 err: 015) right parenthesis expected
|__

Simple_CLI2 (Fix and re-Compile the module)

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Simple_CLI2

 Section Head: CLI_Tutorial
[Use M2IDE instead of the CLI for "real" projects.]

A Simple CLI-Built Example, continued

Fix and re-Compile the module

Edit the parenthesis into the file at the appropriate point and try again. HelloWorld

|
| > mod2 HelloWorld
|
| Aglet PPC Mod2 v3.1 Compiler Beta1 (13.2.2011)
| Copyright (c) 2004 by Thomas Breeden
| HelloWorld.mod
| <- M2Lv3:STextIO.SBM
|
| -> T:HelloWorld.asm
|
| Optimize Setting: DeadCode
| SDK:gcc/bin/as -o HelloWorld.o T:HelloWorld.asm 0
|__

This time the compiler successfully creates the PPC assembly language file and
invokes the SDK program as to produce the Elf object file.

Simple_CLI3 (Link the Program Module)

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Simple_CLI3

 Section Head: CLI_Tutorial
[Use M2IDE instead of the CLI for "real" projects.]

A Simple CLI-Built Example, continued

Link the Program Module

|
| > mod2lnk HelloWorld
| Mod2Lnk Amiga 0.4 (16.12.2009) OS 4.0 Beta2
| Copyright (c) 2004 Tom Breeden
|
| HelloWorld
| SDK:gcc/bin/as -o HelloWorld_start.o HelloWorld_start.asm
| SDK:gcc/bin/ld -o HelloWorld T:HelloWorld.lnk -q -nostdlib -x
| Mod2Lnk done ErrStatus: 0000
|__

The M2 pre-linker has inspected the HelloWorld.o file, which contains a summary of
the program Module's imports, found the standard IO module STextIO and
continued recursively to determine all the modules that must be linked for this
program.

It created and assembled the startup object module for this program.

And finally it put together the a command file for the SDK linker and invoked ld to
produce the executable, HelloWorld.

Run the Program

|
| > HelloWorld
| Hello world!
| Goodbye world
|__

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
HelloWorld_err

 (*############*)
 MODULE HelloWorld; (* $VER: HelloWorld.mod 0.0 (13.3.2008) *)
(*############*)

FROM STextIO IMPORT WriteLn, WriteString;

BEGIN

WriteString("Hello world!"; (* missing parenthesis *)
WriteLn;

FINALLY

WriteString("Goodbye world"); WriteLn;

END HelloWorld.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
HelloWorld

 (*############*)
 MODULE HelloWorld; (* $VER: HelloWorld.mod 0.0 (13.3.2008) *)
(*############*)

FROM STextIO IMPORT WriteLn, WriteString;

BEGIN

WriteString("Hello world!"); (* missing parenthesis fixed here *)
WriteLn;

FINALLY

WriteString("Goodbye world"); WriteLn;

END HelloWorld.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Aglet_Implementation

 Prev section: CLI_Tutorial
 Next section: M2_Examples

Aglet Implementation

M2 Compiler Compiler
Obj File Linking Linker
Tools Tools

Aglet Support Modules Support

Amiga Specific Info Amiga_Specific
Tips Tips
Debugging Hints Debugging

.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Compiler

 Section Head: Aglet_Implementation
M2 Compiler

The compiler version documented here is:
Aglet M2 PPC Compiler v3.2 Beta Compiler (13.2.2012)
Copyright (c) 2004 by Tom Breeden

Compiler-Switches

All switches start with a dash.

Compiler-Pragmas

All Pragmas (embedded switches) are delimited by the "<*" and "*>" characters,
similar to a "special" comment.

ALIB

LibAutoOpen

After the startup code executes, a number of libraries will already be open: exec, dos,
graphics, intuition, layers, utility.

For nearly all other Amiga libraries, modules that provide access to the procedures
will automatically open that shared library, and its main Interface, in the module
initialization code (and close it in the termination code), so you will rarely if ever
need to call OpenLibrary in your code.

CLIB

CNewLib

Other compiler info

1. A null char is placed at end of every literal string.
2. An embedded PPC assembler is provided, but it is very "bare-bones", and

probably of little use except for very specialized requirements (eg, non-ABI calls).
3. On exit, the compiler provides a CLI ReturnCode of 20 for errors that prevent

compilation, such as invalid arguments or inability to open a file. Runs that
complete with compilation errors return 5, otherwise a 0 is returned for a
successful compile.

SYSTEM.def

LowLevel

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Compiler-Switches

 Section Head: Compiler
Compiler Switches

Runtime Checking Control

-rngchk Range Chk = checks of indexing, subrange, implied type
conversions. <- DEFAULT

-rngchkoff Compile without generating any range checks.
-ovflchk Overflow Chk = checks of arithmetic operations.
-ovflchkoff Compile without generating any overflow checks. <- DEFAULT

Code Generation Control

-nocode Parse and produce intermediate code, but skip generating PPC
code.

-optlev <num> Optimize Level (currently not needed as there is only one level)
-debugopt Does a compile with very little optimization.

Debugging and Information

-list Output a source + code listing
-listfil <str> Write the listing to this file
-verbose Verbose compile, reporting on each phase of the compile.
-verbose+ More Verbose compile

Import and Output Control

-infil <str> Input file specification
-outdir <str> Out Files Dir (for the sym and obj files) <- DEFAULT is current

dir
-symdir <str> Sym Files Dir - "M2Lv3:" will always be searched as well.

Settings of compiler resource sizes

-instrubuf <num> Instruction Buffer size. <- DEFAULT is 5000

The Amiga program template looks like this:

-infil,-symdir/K,-outdir/K,-nocode/S,-optlev/K/N,-rngchk/S,-rngchkoff/S,
-ovflchk/S,-ovflchkoff/S,-stkchk/S,-instrubuf/K/N,
-list/S,-listfil/K,-pragma/K,-verbose/S,-verbose+/S,
-debugopt/S,-debug/S,-wdebug/S,-dbgverbose/S,
-dbgverbose+/S,-todo/S,-clrkey/S,-version/S,-help/S

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Compiler-Pragmas

 Section Head: Compiler
Compiler Pragmas

<*ISOMode(param)*> param = Strict, Semi, or Loose
 - eg "<*ISOMode(Semi)*>"

<*AlignMode(param)*> param = SysV, Amiga, or Default
<*NoParamCopy(param)*> param = ON or OFF
<*ForeignProc(param)*> param = ON or OFF
<*Asm(param)*> param = ON or OFF
<*PrologOff(param)*> param = ON or OFF
<*PostlogOff(param)*> param = ON or OFF
<*RangeCheck(param)*> param = ON or OFF
<*OverflowCheck(param)*> param = ON or OFF

NOTES:

1. ISOMode
Strict - Any non-ISO compliant usage is flagged as an error.
Semi - Allows ADR() on string literals
Loose - Allows ADR() on a lev 0 procedures.

 - HIGH() on non-open arrays
 - VAL() on pointers, sets, opaques
 - CAST() on a numeric literal.
 - SIZE() on a non-entire variable, eg, Ar[b], Pt^, R.c
 - Interprets quoted n, b, r, t, f, v, xNN NNN

2. AlignMode
Needed for most existing AmigaLib structure definitions, which are mapped to
memory differently from the PPC SysV alignment rules. New code, if it does not
require M68K compatibility, should use the default of SysV alignment.

3. NoParamCopy
Forces off any copying of non-VAR dynamic arrays. The compiler only makes a
copy of these pass-by-value parameters if the procedure actually changes or
"threatens" the parameter. In programming for a C based API like Amiga's this
usually is due to having to use the ADR() function on a non-VAR parameter in order
to pass a string pointer. Documentation should be consulted to determine if the
called routine actually changes the string.

Careful, do not use this unless you are sure the array is not changed.

4. Asm
Bracket embedded PPC assembly code with <*Asm(ON)*> / <*Asm(OFF)*>.
Use only in simple situations; may give problems if used within conditional
statements.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

5. ForeignProc
Procedures declared in the Definition module while <*ForeignProc(ON)*> are
not present in the Implementation module. e.g, the procs in libm.def, which are
linked in from the SDK's C library "clib2/lib/libm.a".

6. PrologOff/PostlogOff

Special usage, perhaps with <*Asm(ON)*>.

7. RangeCheck
For turning code generation of range checking ON or OFF between statements.

8. OverflowCheck
For turning code generation of overflow checking ON or OFF between statements.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
ALIB

 Section Head: Compiler
Amiga Library Calls

Amiga library Interfaces are represented in Aglet M2 PPC as pointers to a record
each field of which represents, and is named for, one of the functions defined in the
interface's XML specification.

The first parameter, always the interface pointer itself, is not hidden. Varargs versions
of the functions are not supported (and are represented in the Interface table structure
simply by dummy PROC entries).

These records are defined in Definition modules distributed with Aglet M2 PPC ,
generally named by appending "Interfaces" to the name of the Amiga library. The
Interface pointer, which is auto-opened in the module initialization code, is also
declared in this Definition module, ready-to-use.

For example, to call the AmigaDos library Open routine, use:

f := IDOS^.Open(IDOS, "MyFile", ModeOldFile);

From the AmigaDosInterfaces.def file:

(*################################*)
 DEFINITION MODULE AmigaDosInterfaces;
(*################################*)
FROM SYSTEM IMPORT ADDRESS, BYTE;
FROM Types IMPORT INTEGER64, STRPTR;
FROM Interfaces IMPORT InterfaceData, InterfacePtr;
FROM AmigaDOS IMPORT BPTR, BSTR, DateStampPtr, DateStampRecord,

FileHandle, FileInfoBlockPtr, <etc> ...
<*AlignMode(SysV)*>

TYPE DOSIFacePtr = POINTER TO DOSIFace;
CONST dosLibName = "dos.library";
VAR DOSBase :LibraryPtr;
 IDOS :DOSIFacePtr;
TYPE
DOSIFace = RECORD (* v1.0 *)
 Data :InterfaceData;
 Obtain :PROCEDURE(DOSIFacePtr):CARDINAL;
 Release :PROCEDURE(DOSIFacePtr):CARDINAL;
 Expunge :PROCEDURE(DOSIFacePtr);

 Clone :PROCEDURE(DOSIFacePtr):InterfacePtr;
 Open :PROCEDURE(DOSIFacePtr, (*name*)ARRAY OF CHAR,

(*accessMode*)INTEGER):FileHandle;
 Close :PROCEDURE(DOSIFacePtr, FileHandle):INTEGER;
 Read :PROCEDURE(DOSIFacePtr, FileHandle, (*buffer*)ADDRESS,

(*length*)INTEGER):INTEGER;
<etc> ...

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

See the description of the tool IDLTm2 for more details on Aglet M2 PPC 's support for
creating interface Definition module files from the AmigaLibrary's XML Interface
specification.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
LibAutoOpen

 Section head: Compiler
Library Auto-Open

The initialization code of a library interface Implementation module opens the library
and its Main Interface, which is used to make calls to the library. The module's
termination code closes both as well.

For example, for DataTypes we have

DEFINITION MODULE DataTypesInterfaces;

 which exports these items:

VAR DataTypesBase :LibraryPtr;
TYPE DataTypesIFacePtr = POINTER TO DataTypesIFace;
VAR IDataTypes :DataTypesIFacePtr;

"DataTypesIFace" is a RECORD defining the interfaces's procedures, each as a
named field in the record.

"IDataTypes" is the interface handle pointer which is used in calling the library's
procedures and functions.

"DataTypesBase" is the library base pointer, not normally needed except within the
module's init and term code.

eg,

NewDTObjectA :PROCEDURE(DataTypesIFacePtr, (*name*)ARRAY OF CHAR,
ARRAY OF TagItem):Object;

which is called as:

obj := IDataTypes^.NewDTObjectA(IDataTypes, 'Myfile.guide', TagItems);

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
CLIB

 Section head: Compiler
Static C Library Calls

The ELF object file format used by the compiler is compatible with that of gcc. You can
use C procedures from a static library (that follows the SYSV ABI) as follows:

> Create a Definition module using the <*ForeignProc(ON)*> compiler pragma.

This defines the parameters and return value for M2 use and tells the compiler
not to look for any implementation of these procedures in the corresponding
Implementation module.

> Use the -libname <path/file> switch when using Mod2Lnk so that the linker
can retrieve the object code for these C functions.

(It should also be possible to prepare a static library from a Modula-2 module that can
be linked into a C program, but I have done no work with this.)

Actually, the only static C library I've used so far is SDK:clib2/lib/libm, which is
currently used to implement most of the ISO Standard RealMath library modules.

eg, ___

(*#################*)
 DEFINITION MODULE libm; (* $VER: libm.def 0.0 (3.7.2007) *)
(*#################*)
(* For calling functions in SDK:clib2/lib/libm.a
 You will need to use the "-libname" switch in Mod2Lnk as well. *)

<*ForeignProc(ON)*>

 PROCEDURE acos(x:LONGREAL):LONGREAL;
 PROCEDURE asin(x:LONGREAL):LONGREAL;
 PROCEDURE atan(x:LONGREAL):LONGREAL;
 PROCEDURE atan2(y, x:LONGREAL):LONGREAL;
 PROCEDURE ceil(x:LONGREAL):LONGREAL;
 PROCEDURE cos(x:LONGREAL):LONGREAL;
 <etc> ...

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
CNewLib

 Section head: Compiler
Dynamic ".so" C Library Calls

Unix style ".so" C libraries can be linked similarly to static C archive libraries.

Mod2Lnk is currently configured only for the C Newlib .so library. ie, if Mod2Lnk is
started with the CLI switch "-libname SOBJS:libc.so", it will search Newlib for
unresolved symbols.

This has only be used and tested for the procedures in libm.DEF, which implement the
ISO RealMath and LongMath modules. In fact, those modules are only implemented via
the <*ForeignProc()*> pragma.

ie, either "-libname SDK:clib2/lib/libm.a", to use the static CLib2, or "-libname
SOBJS:libc.so", to use C Newlib, must be used if any of RealMath or LongMath
procedures are called in your program.

(I am not aware of any advantage or disadvantage of one or the other).

What Mod2Lnk actually does to use this library is:

- link system module CNewLib to open the newlib.library Amiga library
at startup.

- add libc.so to the *.lnk control file for the ld linker.
- invoke ld with a CLI parameter "--defsym INewlib=CNewLib$_data"

.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
SYSTEM.def

 Section head: Compiler

The pseudo-module SYSTEM is embedded in the compiler, but still must be IMPORTed
if you use its low-level facilities:

(*#######################*)
 DEFINITION MODULE SYSTEM;
(*#######################*)

 (* Gives access to system programming facilities that are probably non
portable. *)
 (* The constants and types define underlying properties of storage *)

CONST

 BITSPERLOC = 8;
 LOCSPERWORD = 4;

 LOCSPERBYTE = 1;
 LOCSPERHALFWORD = 2;

TYPE LOC; (* A system basic type. Values are the uninterpreted contents of the
smallest addressable unit of storage *)
 ADDRESS = POINTER TO LOC;
 WORD = ARRAY [0 . . LOCSPERWORD-1] OF LOC;
 (* BYTE and LOCSPERBYTE are provided if appropriate for machine *)
TYPE BYTE = ARRAY [0 .. LOCSPERBYTE-1] OF LOC;
TYPE HALFWORD = ARRAY [0 .. LOCSPERWORD-1] OF LOC;
TYPE WORDWORD = ARRAY [0 .. LOCSPERWORD-1] OF LOC;
 PROCEDURE ADDADR(addr:ADDRESS; offset:CARDINAL):ADDRESS;
 (* Returns address given by (addr + offset), or may raise an exception if

this address is not valid. *)

 PROCEDURE SUBADR(addr:ADDRESS; offset:CARDINAL):ADDRESS;
 (* Returns address given by (addr - offset), or may raise an exception if

this address is not valid. *)

 PROCEDURE DIFADR(addr1, addr2:ADDRESS):INTEGER;
 (* Returns the difference between addresses (addr1 - addr2), or may raise

an exception if the arguments are invalid or if the address space is
non-contiguous. *)

 PROCEDURE ADR (VAR v: <anytype>): ADDRESS;
 (* Returns the address of variable v. *)

 PROCEDURE ROTATE (val: <a packedset type>; num: INTEGER): <type of first
parameter>;

 (* Returns a bit sequence obtained from val by rotating up or down (left or
right) by the absolute value of num. The direction is down if the sign
of num is negative, otherwise the direction is up. *)

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

 PROCEDURE SHIFT (val: <a packedset type>; num: INTEGER): <type of first
parameter>;

 (* Returns a bit sequence obtained from val by shifting up or down (left or
right) by the absolute value of num, introducing zeros as necessary.
The direction is down if the sign of num is negative, otherwise the
direction is up. *)

 PROCEDURE CAST(<targettype>; val:<anytype>):<targettype>;
 (* CAST is a type transfer function. Given the expression denoted by val,

it returns a value of the type <targettype>. An invalid value for the
target value or a physical address alignment problem may raise an
exception. *)

 PROCEDURE TSIZE(<type>; . . . >:CARDINAL;
 (* Returns the number of LOCS used to store a value of the specified

<type>. The extra parameters, if present, are used to distinguish
variants in a variant record. *)

(* -- *)

 PROCEDURE REG(r:[0..31]):CARDINAL;
 PROCEDURE FREG(fr[0..31]):LONGREAL;
 PROCEDURE SREG([0..4]):CARDINAL; (* 0=CR, 1=LR, 2=CTR, 3=XER, 4=FPSCR *)
(* FPSCR NYI *)

 PROCEDURE SETREG(r:[0..31]; val:CARDINAL);
 PROCEDURE SETFREG(r:[0..31]; val:CARDINAL);
 PROCEDURE SETSREG(r:[0..4]; val:CARDINAL);
(* FPSCR NYI *)

END SYSTEM.

.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
LowLevel

 Section head: Compiler
Low Level Information

Module SystemRTS

The Aglet system uses a "hidden" module, SystemRTS, to provide some common
run-time code support for every program.

The compiler embeds calls to some of the SystemRTS routines in generated code in
order to implement actions related to procedure prologue and epilogue, most of
the EXCEPTION processing support, and other things. Mod2Lnk uses it for
program startup and exit code.

SystemRTS is a normal module (residing in M2Lv3:system/), and must be
accessible during every compile and link. You do not have to explicitly import it for
the compiler's usage.

Currently, however, there are item(s) in its Definition module that you may want to
access in your code (eg, a variable containing the CLIReturnCode). In which case,
you must explicitly import SystemRTS.

Module CNewLib

Another "hidden" module, CNewLib, will be included automatically by Mod2Lnk if
it is given the switch "-libname SOBJS:libc.so".

Module SymbolsRTS

The module SymbolsRTS can be used to include code to display the source name
of procedures when an EXCEPTION occurs at runtime (or an Assert() fails).

SymbolsRTS is not hidden; the programmer must add "IMPORT SymbolsRTS;" to
his program.

Type Sizes

BOOLEAN 1 byte
CHAR 1 byte
CARDINAL 4 bytes
INTEGER 4 bytes
BITSET8 1 bytes
BITSET 2 bytes
BITSET32 4 bytes
REAL 4 bytes
LONGREAL 8 bytes
PROC 4 bytes
CARDINAL16 2 bytes
CARDINAL8 1 byte

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

INTEGER16 2 bytes
INTEGER8 1 byte

CARDINAL32 = CARDINAL
INTEGER32 = INTEGER

Array indices 1, 2, or 4 bytes, depending on the index type
Enumerations 1 byte
Sets 1, 2, or 4 bytes, depending of the set size

SYSV

Module Keys

The module version key is a 32 bit "Fletcher" type checksum. The extra bits are
currently zeroed.

The checksum is only calculated on significant characters in the DEF file, ie it does not
include spaces or tabs (unless in a literal) or comments, so a DEF file can be
reformatted graphically and comments added/changed and it will still compile to the
same key value.

.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
SYSV

 Section head: Compiler
SysV ABI

Calling protocol

PPC SysV ABI is used for parameters.
HIGH() values are passed "hidden" from the ABI (available to Modula-2 programs
only)

The Module's global data pointer is maintained in r13.
The Procedure's mark (frame) data pointer is maintained in r14.

PPC SysV ABI Summary

Register r1 is used as the stack pointer.

Most parameters are passed in registers; the first eight non-floating point
parameters are assigned to r3..r10 in order left to right. The first eight FP
parameters are assigned to f1..f8.

Floating point return values are placed in f1. Other return values into r3, and, if 64
bit, r4.

Only for registers r13..r31 and f14..f31 will the contents be preserved across
procedure calls.

Any parameters after the eight GP registers (or seven FP registers) are passed in a
special area of the caller's stack frame. Each of these parameters is stored
extended to 32 bits in that area, except that all Floating Points parameters are
converted to Double Precision (64 bits).

In general, scaler types are allocated at an address aligned to their size (eg, CHAR
is aligned to 1 byte, INTEGER to 4 bytes, REAL to 4 bytes).

A RECORD is placed in memory at an alignment equal to the largest alignment
value of any of its members. An ARRAY is always aligned to the alignment of its
elements.

Details can be found in the document, SystemV Application Binary Interface,
PowerPC Processor Supplement , Steve Zucker, Sunsoft and Kari Karhi, IBM -
available on-line.

StackFrame
.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
StackFrame

 Section head: Compiler
Stack Frame

 FPR Save Area <varying size> max is 32*8 = 256
 GPR Save Area <varying size> max is 32*4 = 128
 CR Save Area 4 bytes
 Frame Padding to 16 bytes <varying size> -------------------,
 Dyn array pass-by-val copy <varying size> Modula-2 ---, |
 pass-by-value array copy <varying size> Modula-2 ---' | ABI "Local Variable Area"
 Local Variable Space <varying size> -------------, |
 for Reg Params and HIGHs <varying size> Modula-2 | |
 gp save word 4 bytes Modula-2 | |
mp -> mp Back Chain 4 bytes Modula-2 ---' ----'
 Static Link for Callee 4/0 bytes Modula-2 ---,
 ... | ABI Parameter Passing Area
 HIGHs for Callee n*4 bytes Modula-2 |
 ABI Overflow params <varying size> -------------'
 LR Save word 4 bytes
sp -> Frame Back Chain 4 bytes

The stack frame has 16 byte(!) alignment.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Linker

 Section Head: Aglet_Implementation
 Next subsection: Tools

Amiga Object File Linking

Mod2Lnk performs some Modula-2 specific pre-processing and then invokes the ld
linker from the Amiga OS4 SDK to produce a standard AOS4 Elf object file. I often
refer to Mod2Lnk as the "pre-linker".

What Mod2Lnk Does

Finds, using the current directory, any command line switches, and the "M2Lv3:"
assign, the object files for all directly and indirectly imported modules used by
your program.

Checks for module key ModKeysLink.

Warns about ModKeysCircle between modules, which may introduce problems due
to initialization order.

Generates an "xxx_start" object file which controls the proper order of module
initialization and termination calls.

Linker Switches

-infil/A Name of program module
-indir/K Dir to search for object files ("M2Lv3:" will always be searched)
-outdir/K Where to put the output file
-stack/K/N Stack size to embed in executable via the "$STACK:xxxxxx"

string.
-g=-incldbg/S Currently, specifies that local proc symbols be included in the

executable.
-verbose/S Display a list of all modules linked and the order of module

inits/terms
-verbose+/S As above, but also include info on the clients each module has.
-listfil/K Output info to a file rather than stdout
-libname/K Non-M2 obj library to include in the link (eg.

"SDK:clib2/lib/libm.a")
-listmap/K Ask ld to produce a link map into the specified file.
-version/S
-help/S

Example
A link of the program GuideMaker :

mod2lnk GuideMaker -libname Work:SDK/clib2/lib/libm.a

Mod2Lnk Amiga 0.4 (11.7.2009)
OS 4.0 Copyright (c) 2004 Tom Breeden

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

 GuideMaker
Warning MutualImport: SimpleGUIHidden SimpleGUI
Warning MutualImport: SimpleGUISupport SimpleGUI
Warning MutualImport: GuideMakerNodeProcess GuideMakerGUI

SDK:gcc/bin/as -o GuideMaker_start.o GuideMaker_start.asm
SDK:gcc/bin/ld -o GuideMaker T:GuideMaker.lnk -q -nostdlib -x
Mod2Lnk done ErrStatus: 0000

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Tools

 Section Head: Aglet_Implementation
 Next subsection: Support

Tools

M2Err Error lister

IDLTm2 Interface XML to Definition module

TGm2 Test Generator

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
M2Err

 Section Head: Tools
M2Err

The compiler writes out error information for each module compilation into the
directory "T:" in binary format and named as <module>".err".

The small program "M2Err" will interpret and list the errors in the .err file. If the
source file is accessible to M2Err, it will list the appropriate source line along with
each error message.

M2Err template: -f,-w/S,-p/S

 -f should be followed by the name of the error file.
 -p causes M2Err to pause between the output of each error.
 -w causes it to open a window and write the error results into it.

If no "-f" parameter is given, it will process the most recently written .err file in T:.

Note: If you use the integrated development environment, M2IDE , you will not
need to run M2Err yourself.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
IDLTm2

 Section Head: Tools
IDLTm2

IDLTm2 is a program to take the AOS4 library interface description XML file and
produce a Modula-2 Definition module file that can (with some additional edits) be
used to call the library directly from M2 programs and implementation modules. ie.,
something of a Modula-2 analog of the SDK program IDLTool .

PgmTemplate

-infil/A,-impl=implement/S,-version/S,-help/S

-infil The XML file describing the Amiga library interface(s).
-impl Produce a skeleton Implementation module as well as the Definition

module.

The version with this release is v1.1 (11/23/2011).

The XML files for the standard Amiga Libraries are distributed with the SDK and
named appropriately for their library, eg, for diskfont.library this is "diskfont.xml".

Output

The output file will be will be a draft version of the DEFINITION MODULE for the
interface(s), named by adding "Interfaces" to the library name, eg,
"diskfontInterfaces.def", and, optionally, a draft version of the IMPLEMENTATION
MODULE with autoopen code included.

These will require a little editing before use.

IDLTm2 will automatically create the declarations for a constant containing the
library name, and variables to hold the library base and the interface (pointer)
itself. eg,

CONST diskfontLibName = "diskfont.library";
VAR DiskfontBase :LibraryPtr;
TYPE DiskfontIFacePtr = POINTER TO DiskfontIFace;
VAR IDiskfont :DiskfontIFacePtr;

And, of course, the RECORD containing the definitions of the interface's
procedures. IDLTm2 translates the parameters to each procedure and function
into compatible, but often not ideal, M2 data types. A little knowledge of the SDK
AutoDocs and the Aglet implementation will often allow you to edit the initially
produced definition into something equivalent, but better suited to Modula-2. For
example you can often avoid C's lack of arrays as parameters knowing that Aglet
M2 PPC passes all arrays (and records) by reference, whether VAR or non-VAR.
Thus, the original output of IDLTm2 :

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

OpenOutlineFont :PROCEDURE(DiskfontIFacePtr, (*name*)ADDRESS, ListPtr,
(*flags*)CARDINAL):OutlineFontPtr;

can be manually edited to a better declaration:

OpenOutlineFont :PROCEDURE(DiskfontIFacePtr, (*name*)ARRAY OF CHAR,
ListPtr, (*flags*)BITSET32):OutlineFontPtr;

IDLTm2 knows about a few of these optimizations (eg, it will always translate
"const struct TagItem *" as "ARRAY OF TagItem", but most you will need to do
yourself (if you want the best DEFINITION file).

See ALIB for more information.

In most cases, for Amiga libraries, I have kept the constants, types, and variables used
by the library in separate DEFINITION module(s) from the interface's one. For the
Reaction classes, however, I have added the class-associated types, consts, and
variables to the IDLTm2 produced DEFINITION file.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
TGm2

 Section Head: Tools
TGm2 Test Generator Program

tgM2 is a program to aide in unit testing of Modula-2 software. It takes as input a
user-prepared test script (*.ts file) which specifies one or more tests of a procedure or
code block to be executed and reported upon. tgM2 writes out a Modula-2 program
for this test suite. The output program itself writes its results to standard output.

tgM2 owes its existence and most of its architecture to the Ada 95 test driver
generator program tg for Ada written by Andre Spiegel, along with the version of tg
for Modula-2 (still an Ada 95 program) adapted to generate Modula-2 scripts done by
Ralf Reissing.

(See more documentation at "http://www.modula2.org/projects/tgM2.php")

A simple program, TestManager , has been written for automated testing that uses
tgM2 and its *.ts files to generate, run, and report the results on large batches of test
cases.

The beginnings of a compiler regression testing suite is located in the "Validate/"
subdirectory of the Aglet M2 PPC distribution.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Support

 Section Head: Aglet_Implementation
 Next subsection: Amiga_Specific

AgletM2 Support Modules

General Notes

These LibAutoOpen any Amiga libraries they use (in the module initialization code).

Only a few have some "thread safety" build into them. e.g, the modules Storage and
SystemStorage, do wrap their internal critical sections in semaphores.

AmigaMods

ReactionMods

ISOMods

SysMods

ExperimentalMods

.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
AmigaMods

 Section Head: Support
 Next subsection: ReactionMods

Amiga Library Definition Modules

The SDK include files defining the types and constants used by the Amiga libraries are
the model for the set of Modula-2 DEFINITION modules serving the same purpose.
Most of the current definitions files were derived from SDK v53.20.

In many cases, multiple related *.h files have been combined into one *.def file. Also, in
some cases the C definitions have been converted to utilize the more expressive type
system of M2, often by introducing appropriate SET types where int or unsigned have
been used in C. The IMPLEMENTATION module for these *.h file conversions is usually
empty.

The AOS4 library interfaces are represented by one or more RECORD type definitions
representing the interface jump table. These have usually been placed into a Modula-2
DEFINITION module named after the Amiga library, eg, "DEFINITION MODULE
IntuitionInterfaces".

The IMPLEMENTATION module for these interface definitions auto-opens the library
and interface on module initialization, and closes them on module termination. See
more details in ALIB and LibAutoOpen

AmigaModsList

.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
AmigaModsList

 Section Head: AmigaMods
Amiga Library Modules List

Alerts -
AmigaDOS -
AmigaDOS2 -
AmigaDOSExt -
AmigaDosInterfaces -
AmigaDOSNotify -
AmigaDOSProcess -
AmigaDOSTags -
AmigaGuide -
AmigaGuideInterfaces -
AmigaInput -
AmigaInputInterfaces -
AmigaSemaphores -
AnimationClass -
Application -
ApplicationInterfaces -
Areas -
Asl -
aslInterfaces -
AVL -
BitMapShare -
Blit -
BoopsiAlib -
BoopsiClasses -
BoopsiImplementor -
BoopsiUser -
bulletInterfaces -
ClipBoardDevice -
Clipping -
ColorWheel -
ColorWheelInterfaces -
Composite -
ConsoleDevice -
consoleInterfaces -
Copper -
CustomHardware -
DataTypes -
DataTypesClass -
DataTypesInterfaces -
DiskFont -
diskfontInterfaces -
DiskFontTag -
DisplayInfo -
Docky -
DockyInterfaces -

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

Drawing -
elf -
elfInterfaces -
Emulation -
ExecBase -
ExecInterfaces -
ExecTags -
FileHandler -
FontPrefs -
GadTools -
GadToolsInterfaces -
Gels -
Glyph -
Graphics -
GraphicsBase -
GraphicsInterfaces -
HunkInterfaces -
Hunks -
Icon -
iconInterfaces -
IFFParse -
IFFParseInterfaces -
Initializers -
InputEvents -
Interfaces -
Interrupts -
Intuition -
Intuition2 -
IntuitionBase -
IntuitionGUI -
IntuitionInterfaces -
IntuitionNotify -
IntuitionPlugins -
IODevices -
KeyMap -
KeyMapInterfaces -
LayersInterfaces -
Libraries -
LibrariesExtended -
Lists -
Locale -
LocaleInterfaces -
Memory -
ModeId -
Monitor -
NewMenus -
NewStyleDevice -
Nodes -
OTErrors -

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

PictureClass -
Ports -
Preferences -
PrefHdr -
PrinterDevice -
PrinterGraphics -
Rasters -
ReactionPrefs -
Regions -
Resident -
RexxIO -
RexxStorage -
rexxsyslibInterfaces -
RxsLib -
ScreensPrefs -
SoundClass -
Sprites -
Tasks -
Text -
TextClass -
TextClipInterfaces -
TimerDevice -
timerInterfaces -
TimeSync -
TimeSyncInterfaces -
TimeZoneInterfaces -
UserInterfPrefs -
Utility -
UtilityInterfaces -
UtilityTags -
Views -
wbInterfaces -
WorkBench -

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
ReactionMods

 Section Head: Support
 Next subsection: SysMods

Reaction Definition Modules

These are derived from the AmigaOS 4.1 C includes and XML files for Reaction.

See also the Aglet experimental module SimpleGUI. This is the beginnings of a higher
level interface layered on Reaction, but insulating the programmer from many of the
details of programming for Reaction.

Similar Aglet "second level" modules for Amiga programming are SimpleRequesters,
SimpleMenus, SimpleImageHandler, SimpleScreens, SimpleGraphics.

ReactionModsList

.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
ReactionModsList

 Section Head: ReactionMods
Amiga Reaction Modules List

Reaction -
ReactionARexx -
ReactionBevel -
ReactionBitMap -
ReactionButton -
ReactionCheckBox -
ReactionChooser -
ReactionClickTab -
ReactionDateBrowser -
ReactionDrawList -
ReactionFiller -
ReactionFuelGauge -
ReactionGetColor -
ReactionGetFile -
ReactionGetFont -
ReactionGetScreenMode -
ReactionGlyph -
ReactionInteger -
ReactionLabel -
ReactionLayout -
ReactionLib -
ReactionListBrowser -
ReactionPalette -
ReactionPenmap -
ReactionPrefs -
ReactionRadioButton -
ReactionRequester -
ReactionScroller -
ReactionSketchBoard -
ReactionSlider -
ReactionSpace -
ReactionSpeedBar -
ReactionString -
ReactionTextEditor -
ReactionVirtual -
ReactionWindow -
UserInterfPrefs -

.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
SysMods

 Section Head: Support
 Next subsection: ExperimentalMods

Aglet Sysmod Library

Amiga Specific
 AccessFontPrefs Returns info on the five Prefs-specified fonts.
 AccessScreenPrefs Returns list of the Prefs-specified Public Screens.

 AmigaTimer Simple Interface for using the Amiga Timer Device
 AnsiTerminal CLI window as an ANSI standard video terminal
 ArgsSupport AmigaOS style arguments and templates
 Break Test SigBreakCtrlC (^C) for an Amiga process
 FontSupport Connect to Amiga common fonts via "generic" font names
 MachineEnv Access to screen, OS, and CPU config details
 PipeIO IO implementation suitable for PIPEs

 SimpleRexx patterned on Michael Sinz' original C version
 SimpRexx1 support for creating ARexx Command Messages

 TagsUtils For setting up Tag arrays used by AOS procedure calls
 TagsUtilsDyn As above, but the Tag array size is not fixed at compile

time.

 IntuiSupport Amiga window and screen support layer [Superceded by
SimpleGUI]

 IDCMPraw IDCMP message handling process for IntuiSupport
[Superceded by SimpleGUI]

GUI
 FileBrowsing Use the ASL file browser
 (see also SimpleGUI, et.al. under ExperimentalMods)

Data Structures
 BinaryTree Binary Trees, pointer based genericity
 BSEARCH Binary Search
 HashT Hash Table
 ListV2Processor Generic List Processor, with element ordering.
 Lists0 Simpler list processing layered directly on Exec Lists.
 QSORT QuickSort
 Queue Generic queues
 RandomFiles Random access to fixed size record file.
 Set0 bitsets larger than 32 elements
 STACK Generic stacks

Math
 MatrixOperations
 RandomNumbers

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

 RandInts Processing groups of random integers
 SimultaneousEquations
 Arith64 Current substitute for the lack of LONGINTEGER /

LONGCARDINAL
 BigInt Arithmetic on extremely large integers, up to about 48

decimal digits.

String Handling
 Str0, Str1, Str1NC Null delimited static string handling procedures
 Str2, Str3

 StrValue String <-> Number conversions
 MyConversions see also ISO mods Strings, WholeConv, RealConv)

 DynStr0, DynStr1 Dynamically allocated, null delimited string procedures
 DynStr2, DynStr2A

 DynStr3, DynStr3A Dynamically reallocated, null delimited string procedures
 DynStr3Policies

 StrSubstitutes String token substitution in blocks of text
 StrMacros String expansion macros, with parameters

 TextBlocks Processing large blocks of text in memory
 TbChans ISO Channel IO interface to TextBlocks

 RegularExpressions as in AmigaOS

DateTime
 DateSupport Julian date processing from 1/1/1900
 UnixTime Unix type times, seconds from 1/1/1970

Directory Processing
 DirUtils Procs for getting File Directory contents and attributes.
 DirUtil0, DirUtil1
 DirUtil2, DirUtil3

Etc
 Assertions Programmer inserted assertions (or warnings).
 ModDebug Programmer inserted debugging statements, supporting

enable/disable
 MaxMin for basic types
 CriticalSections mutual exclusion semaphores w/ producer/consumer

counts
 RTFWrite Write support for RTF files
 TextIOHelper for using ISO TextIO to read text files line by line

correctly
 FontSupport very simple generic font selection.
 FileNameParser Separate file specifications into device, path, name, ext.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
TextIOHelper

 Section Head: Support
TextIOHelper Module

I found myself repeatedly making the same logic errors in simply reading plain text
files using the procedures in the ISO TextIO module directory.

TextIOHelper was written to make it easier to get it right. And it adds a couple of other
fillips: skipping blank lines and using expandable strings to handle long lines.

 __

|
| PROCEDURE ReadNextLine(cid:ChanId; VAR OneLine:ARRAY OF CHAR):ReadResults;
| PROCEDURE ReadNextNonBlankLine(cid:ChanId; VAR OneLine:ARRAY OF CHAR; VAR

NumSkipped:CARDINAL):ReadResults;
|
| PROCEDURE dReadNextLine(cid:ChanId; VAR dOneLine:DynStr):ReadResults;
| (* dOneLine must exist or .str be NIL *)
| PROCEDURE dReadNextNonBlankLine(cid:ChanId; VAR dOneLine:DynStr; VAR

NumSkipped:CARDINAL):ReadResults;
|
|(*
| ReadNextLine - silently truncates any line that won't fit in the OneLine

parameter
| - never returns endOfLine. For empty line returns allRight with

empty OneLine
| - endOfInput is returned only on the call AFTER the one that

returned the last line allRight.
|
| dReadNextLine - reallocates dOneLine to be larger if necessary.
|*)
|
__

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
ExperimentalMods

 Section Head: Support
Aglet Experimental Mods

Amiga Specific
 IconSupport For creating and updating Workbench icons.

GUI
 SimpleGUI Implemented as a layer above Reaction
 SimpleMenus System standard menus - use with SimpleGUI
 SimpleRequesters Procedures to invoke various requesters with a call
 CustomGlyphs Provides a number of Boopsi drawlist figures
 SimpleImageHandler Provides standard and custom Boopsi image and glyph

objects
 SimpleScreens For using public screens with your app.

Graphics
 SimpleGraphics

Directory Processing
 DirUtilsDyn As DirUtils, but using unlimited length strings for file

specifications.

Process Control
 OsRun Module for programatically starting independent CLI

processes

Etc
 Module_Obj OO programming in unextended Modula-2

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
SimpleGUI

 Section Head: Support
SimpleGUI Module

SimpleGUI is a module that provides easy access to Amiga Reaction window and
gadget facilities.

Its approach is essentially that of "simple things should be simple" and that "complex
things should be possible" with development from a simple starting point.

Reaction Details 'Abstracted out'
Though its implementation is Reaction based, it does abstract out the presented
GUI ideas to an extent. (It actually derives from an Amiga-inspired Windows M2
implementation of SimpleGUI that has not yet been fully re-implemented).

Multi-Window Input Thread
Besides the procedures for creating, customizing, and positioning windows and
gadgets, SimpleGUI handles all the details of starting a higher-priority thread to
monitor and buffer the incoming messages from multiple windows/gadgets.

Types, Attributes, and Procedures
A set of available gadgets, not dissimilar to Reaction's, is presented for use:

TYPE Gadgs = (LabelSG, StringSG, EditSG, IntegerSG, RealSG, ButtonSG,
CheckBoxSG, RadioButtonsSG, ScrollerSG, ChooseSG, MenuSG,
ListSG, FuelGaugeSG, SpaceSG, BoxSG, ContainerSG);

One or more attributes, or "modifiers", can be applied to customize the gadgets'
features and behavior:

Modifiers = (Boxed, Static, Transparent, Emphasized, Sorted(*NYI*),

HighCapacity, ReadOnly, Disabled, SizeToFitH, SizeToFitV,
EqualSize, FixedH, FixedV, GreedyH, GreedyV, Hscroller,
Vscroller, UserData);

A number of different events may be retrieved in a simple procedure call by your
program from the SimpleGUI event queue. Each event comes with associated
information attached, such as its originating gadget/window, the mouse position,
the menu select id:

WndoEvnts = (NullEv, CloseEv, IconifyEv, UniconifyEv, SizeEv, PositionEv,
FocusInEv, FocusOutEv, SelectEv, DblClickEv, MenuEv, KbdEv,
HelpEv, LButtonDnEv, LButtonUpEv, RButtonDnEv,
RButtonUpEv, MButtonDnEv, MButtonUpEv, MMoveEv,
PacerEv);

Procedures are used for creating, customizing, positioning, altering, etc, the
gadgets. Some of the procedures apply to any of the Gadgs types, and other

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

procedures are specific for one or two types.

A Work-In-Progress
SimpleGUI is definitely a work-in-progress, though complete enough to produce
non-trivial GUIs (see the M2IDE, and program GuideMaker). New modifiers,
increased orthogonality, and new Gadg types will be added to better take
advantage more of Reaction's capabilities and to make using SimpleGUI easier.

Please see the documentation residing in the comment section of SimpleGUIDef
for more details.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
SimpleGUIDef

(*##########################*)
 DEFINITION MODULE SimpleGUI; (* $VER: SimpleGUI.def 0.3 (6.12.2011) *)
(*##########################*)
(*
Copyright (C) 2002 Thomas Breeden.

Permission to use, copy, modify and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both the copyright
notice and this permission notice appear in supporting documentation.
Thomas Breeden makes no representations about the suitability of this software
for any purpose. It is provided "as is" without express or implied warranty.
*)

FROM SYSTEM IMPORT ADDRESS;
FROM DynStr0 IMPORT DynStr;

FROM BoopsiUser IMPORT Object;

FROM SimpleImageHandler IMPORT Images;
FROM SimpleMenus IMPORT MenuItemId, sMenu;

(*
Gadgs

 ContainerSG Contains other Gadgs (eg, a Reaction Layout)

 LabelSG Static modifier labels are more efficient.

 StringSG Typing ENTER into this Gadg will always generate a SelectEv "event"

 EditSG
 IntegerSG
 ButtonSG
 CheckBoxSG

 ChooseSG a "one-is-always-selected" gadget of a number of text choices,
displayed as a single line of text, with a cycle-through button on
the left, and clicking on the text itself will pop-up all choices.
eg, program modes, or source of window contents

 MenuSG a "do-this-action" or "use-this-datum" gadget, expected to be
displayed as a small button that results in a drop-down list for
picking from. eg, previous files opened, or a compact means of
presenting multiple next actions.

 ListSG Box with vertical scroll bar containing multiple possible selections.
May be none selected or more than one (NYI). Selected item remains
highlighted.

 SpaceSG Space filler
Space gadgets are generally given last priority in determining their
actual size, but they always have a minimum H/V size below which they
will not go.

 ScrollerSG Sliding block within a vertical or horizontal background, with arrow
icons for small steps.

 RealSG <Not Yet Implemented>

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

 RadioButtonsSG <Not Yet Implemented>
 FuelGaugeSG <Not Yet Implemented>
 BoxSG <Not Yet Implemented>

Modifiers

 Boxed -Surround the gadg with a box

-works with ContainerSG, LabelSG (non-static only), ListSG
(multicolumn only), CheckBoxSG, IntegerSG, SpaceSG,
CheckBoxSG
-for multi column list browsers means: put in vertical separators
between columns

 Static -Promises that the contents of a Label Gadg will never change once
created.

 Transparent -As Reaction's Button_Transparent tag. With a hook background can be
transparent for ButtonSG or LabelSG.

 Emphasized -Label will be drawn with the HighLightPen.
 HighCapacity -for StringSG, means it can handle very long strings.

-for ButtonSG, ChooserSG, MenuSG, ListSG, any images are hi-res
and/or multicolor

 ReadOnly -Won't respond to clicks, but does not have the disabled appearance.
 Disabled

 SizeToFit -generally, sets the gadg size to just big enuf for its contents
 SizeToFitH -AsgGadgSize/Dimensions() will override these flags (in the selected

dimension)
 SizeToFitV

 EqualSize -for Containers, all included Gadgs with have equal width.
-works best with a set of similar gadgets, eg, of buttons or labels.

 FixedH -size of gadget horizontally cannot vary from the minsiz.x
 FixedV -size of gadget horizontally cannot vary from the minsiz.y

 GreedyH -IF GreedyH/V, the gadget is given priority in satisfying its
requested size.

 GreedyV

 Hscroller -Include a scroller along with this Gadg.
 Vscroller

 UserData -for ListSG, indicates that one ADDRESS per column can be attached as
user data on each row

 Sorted <not yet implemented>

(* currently, Amiga: SizeToFit works only with Buttons, Labels, and
Containers -many gadgs are implicitly SizeToFitH so they won't expand
vertically *)

SubModifiers

 Toggle <not yet implemented>
 PushButton <not yet implemented>

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

 NotSelectable -for multicolumn ListSG, used to mark one or more columns passive.

 Img -Use a Boopsi image object instead of text for this Button, List
Column Item, or MenuSG item.
-Vector drawn images will resize with the button, other images may
not.

 MonoText -Use a monospaced font for this Label or Edit Gadg.

 Rjust -Specifies column justification for column in multicolumn List Box.

WndoModifiers

 Busy -The HourGlass pointer is displayed.
 NoCloseGad -The window does not get a close gadget
 NoSizeGad -The window does not get a size gadget.
 IconifyGad -The window gets an iconify gadget.
 NoActivateWndo -The window is not activated when opened.
 HelpW -Window will return a HelpEv event if the Help key is pressed. Also

GadgetHelp bubbles are enabled.
 PubScreen -The window may appear on an existing, public, screen.

WndoEvnts

 NullEv
 CloseEv
 IconifyEv
 UniconifyEv
 SizeEv
 PositionEv
 FocusInEv
 FocusOutEv
 SelectEv
 DblClickEv
 MenuEv
 KbdEv
 HelpEv -Help key was pressed on keyboard.
 LButtonDnEv
 LButtonUpEv
 RButtonDnEv
 RButtonUpEv
 MButtonDnEv
 MButtonUpEv
 MMoveEv
 PacerEv -Tenth of a second events (eg, IntuiTicks)

GadgStatus

 On
 Off
 Hit
 DoubleClicked
 Disabld

 Changd <Not Yet Implemented>
*)

(*
 "NYI" = <not yet implemented>

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

*)

TYPE Gadg;
 Wndo;

TYPE Gadgs = (LabelSG, StringSG, EditSG, IntegerSG, RealSG(*NYI*), ButtonSG,
CheckBoxSG, RadioButtonsSG(*NYI*), ScrollerSG, ChooseSG, MenuSG, ListSG,
FuelGaugeSG(*NYI*), SpaceSG, BoxSG(*NYI*), ContainerSG);

 TwoD = RECORD x, y:INTEGER; END;
CONST Ignore = MIN(INTEGER); (* value for TwoD, and some other specs, meaning

ignore this field in the call *)

TYPE Orientations = (Horizontal, Vertical);
 OrientationSet = SET OF Orientations;
CONST BothDimensions = OrientationSet{Horizontal, Vertical};

TYPE Directions = (Left, Right, Up, Down, CenterH, CenterV);
 DirectionSet = SET OF Directions;

 Zpos = [Up..Down];

 Sizes = (Huge, Big, NormalSize, Small, Tiny, CustomSize, UnsetSize);
 DimensionSpec = RECORD

minsize,
maxsize :TwoD;

END;

TYPE Modifiers = (Boxed, Static, Transparent, Emphasized, Sorted(*NYI*),
HighCapacity, ReadOnly, Disabled, SizeToFitH, SizeToFitV,
EqualSize, FixedH, FixedV, GreedyH, GreedyV, Hscroller,
Vscroller, UserData);

 ModifierSet = SET OF Modifiers;
CONST SizeToFit = ModifierSet{SizeToFitH, SizeToFitV};
 FixedSize = ModifierSet{FixedH, FixedV};
 Greedy = ModifierSet{GreedyH, GreedyV};

TYPE SubModifiers = (Toggle(*NYI*), PushButton, NotSelectable, Img,
MonoText,RJust);

 SubModifierSet = SET OF SubModifiers;

TYPE WndoModifiers = (Busy, NoCloseGad, NoSizeGad, IconifyGad, NoActivateWndo,
HelpW, PubScreen);

 WndoModifierSet = SET OF WndoModifiers;

 WndoEvnts = (NullEv, CloseEv, IconifyEv, UniconifyEv, SizeEv, PositionEv,
FocusInEv, FocusOutEv, SelectEv, DblClickEv, MenuEv, KbdEv,
HelpEv, LButtonDnEv, LButtonUpEv, RbuttonDnEv, RButtonUpEv,
MButtonDnEv, MButtonUpEv, MMoveEv, PacerEv);

 WndoEvntSet = SET OF WndoEvnts;

 EvntInfo = RECORD
CASE ev:WndoEvnts OF
HelpEv,
SelectEv,
DblClickEv: g :Gadg;

col :CARDINAL; |
KbdEv: ch :CHAR; |
LButtonDnEv..MButtonUpEv, MMoveEv:

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

gb :Gadg;
x, y :INTEGER; (* relative to gb Gadg *) |

MenuEv: mi :MenuItemId; |
ELSE

END;
END;

 EvntInfoPtr = POINTER TO EvntInfo;

 GadgStatus = (On, Off, Hit, DoubleClicked, Disabld, Changd);
 GadgStatusSet = SET OF GadgStatus;

(* -------------- Wndos ------------------- *)

 PROCEDURE NewWndo(siz:TwoD; orient:Orientations; just:DirectionSet;
modif:WndoModifierSet):Wndo;

 (* also creates the outermost container gadg, using "orient" and "just" *)
 (* a siz of ignore, ignore will let Reaction determine the best size *)

 PROCEDURE WndoContainer(win:Wndo):Gadg;

 PROCEDURE OpenWndo(win:Wndo; position:TwoD; Title:ARRAY OF CHAR);
 PROCEDURE CloseWndo(win:Wndo);
 PROCEDURE IsWndoOpen(win:Wndo):BOOLEAN;
 (* ok to call on NullWndo() *)
 PROCEDURE IconifyWndo(win:Wndo);
 PROCEDURE UniconifyWndo(win:Wndo);

 PROCEDURE InclWndoModifier(wndo:Wndo; wm:WndoModifiers);
 PROCEDURE ExclWndoModifier(wndo:Wndo; wm:WndoModifiers);
 PROCEDURE GetWndoModifiers(wndo:Wndo; VAR wms:WndoModifierSet);

 PROCEDURE DisposeWndo(VAR win:Wndo);
 (* also disposes any gadgs in the wndo; ok to call if win open or closed *)
 (* ok to call on NullWndo() *)

 PROCEDURE AttachWndoMenu(win:Wndo; m:sMenu);
 PROCEDURE DetachWndoMenu(win:Wndo; VAR m:sMenu);
 PROCEDURE QueryWndoMenu(win:Wndo; VAR m:sMenu);
 (* menus are created, constructed, or destroyed outside of SimpleGUI *)

 PROCEDURE GetWndoEvnt(win:Wndo; VAR ev:EvntInfo):BOOLEAN;
 (* safe to call on NullWndo(), BUT NullWndo DOES NOT mean "any window" *)

 PROCEDURE WaitWndoEvnt(win:Wndo);
 PROCEDURE WaitWndoEvntTimed(win:Wndo; TimeOutSecs:CARDINAL); (* DOES NOT SEEM TO WORK

IN A THREAD *)
 (* NullWndo means "any window" -> CURRENTLY ONLY ONE PROCESS CAN WAIT ON NullWndo()
*)

 PROCEDURE SetWndoPacer(win:Wndo; On:BOOLEAN);
 (* opens in Off mode *)
 PROCEDURE TriggerWndoEvnt(win:Wndo; evnt:EvntInfo);
 (* TriggerWndowEvnt(NullWndo()) means a WaitWndoEvnt(NullWndo()) will end the wait,

but no event is currently queued *)

 PROCEDURE SetSpecificScreen(wndo:Wndo; ScreenName:ARRAY OF CHAR):BOOLEAN;
 (* call this just after NewWndo() (or after OpenWndo() but jumping screens is NOT

TESTED *)
 PROCEDURE GetSpecificScreen(wndo:Wndo; VAR ScreenName:ARRAY OF CHAR);

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

 PROCEDURE AsgWndoTitle(win:Wndo; Title:ARRAY OF CHAR);
 PROCEDURE AsgWndoPos(win:Wndo; Position, Size:TwoD);
 PROCEDURE AsgWndoAltPos(win:Wndo; AltPosition, AltSize:TwoD);
 (* use Ignore const for unwanted options *)
 (* will change wndo immediately if open and in the corresponding Pos

(regular/alternate) *)

 PROCEDURE AsgWndoZPos(win:Wndo; UpDown:Zpos);
 (* will change wndo immediately *)

 PROCEDURE GetWndoPos(win:Wndo; VAR Position, Size:TwoD);
 PROCEDURE GetWndoNormPos(win:Wndo; VAR Position, Size:TwoD);
 PROCEDURE GetWndoAltPos(win:Wndo; VAR Position, Size:TwoD);
 PROCEDURE IsWndoAltPos(win:Wndo):BOOLEAN;

(* -------------- Gadgs ------------------- *)

 PROCEDURE NewGadg(typ:Gadgs; modif:ModifierSet):Gadg;
 PROCEDURE NewContainer(orient:Orientations; modif:ModifierSet):Gadg;
 (* {CenterH, CenterV} is the initial justification. Use AsgGadgJustification() to

change that *)
 PROCEDURE NewButton(text:ARRAY OF CHAR; modif:ModifierSet):Gadg;
 PROCEDURE NewCheckBox(text:ARRAY OF CHAR; modif:ModifierSet):Gadg;
 PROCEDURE NewEditBox(text:ARRAY OF CHAR; modif:ModifierSet):Gadg;
 PROCEDURE NewStringBox(text:ARRAY OF CHAR; modif:ModifierSet):Gadg;
 PROCEDURE NewIntegerBox(initial, min, max:INTEGER; modif:ModifierSet):Gadg;

 PROCEDURE NewChoose(modif:ModifierSet):Gadg;
 PROCEDURE NewMenuGadg(text:ARRAY OF CHAR; modif:ModifierSet):Gadg;
 PROCEDURE NewListBox(modif:ModifierSet):Gadg;
 PROCEDURE NewListBoxCols(modif:ModifierSet; NumCols:CARDINAL; ColModif:ARRAY OF

SubModifierSet):Gadg;

 PROCEDURE NewSpace(siz:Sizes; modif:ModifierSet):Gadg;
 PROCEDURE NewLabel(text:ARRAY OF CHAR; modif:ModifierSet):Gadg;

 PROCEDURE NewScroller(lowKnob, highKnob, min, max:INTEGER; orient:Orientations;
modif:ModifierSet):Gadg;

 PROCEDURE DisposeGadg(VAR gad:Gadg);

 PROCEDURE ActivateGadg(gad:Gadg):BOOLEAN;
 (* usually, leave this to the user *)

 PROCEDURE AsgGadgDimensions(gad:Gadg; orients:OrientationSet; siz:DimensionSpec);
 PROCEDURE AsgGadgSize(gad:Gadg; orients:OrientationSet; siz:Sizes);
 PROCEDURE AsgGadgOrientation(gad:Gadg; orient:Orientations);
 PROCEDURE AsgGadgJustification(gad:Gadg; just:DirectionSet);
 (* for a container, the justification value applies to the gadgets within it *)
 PROCEDURE AsgGadgInteger(gad:Gadg; ival:INTEGER);
 PROCEDURE AsgGadgText(gad:Gadg; text:ARRAY OF CHAR; ResizeFit:BOOLEAN);
 (* ResizeFit ignored on Amiga currently *)
 PROCEDURE AsgGadgdText(gad:Gadg; dtext:DynStr);
 PROCEDURE AsgGadgImg(gad:Gadg; image:Images (*,ResizeFit:BOOLEAN*));
 PROCEDURE AsgGadgHelpText(gad:Gadg; dtext:DynStr);

 PROCEDURE RefreshGadg(gad:Gadg);

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

 PROCEDURE ClrGadgGraphics(gad:Gadg; IncludeBorder:BOOLEAN); (* DOES NOT WORK 7/27/03 *)

 PROCEDURE GetGadgType(gad:Gadg):Gadgs;

 PROCEDURE GetGadgDimensions(gad:Gadg; VAR siz:DimensionSpec);
 PROCEDURE GetGadgSize(gad:Gadg; orient:OrientationSet; VAR siz:Sizes);
 PROCEDURE GetGadgOrientation(gad:Gadg; VAR orient:Orientations);
 PROCEDURE GetGadgJustification(gad:Gadg; VAR just:DirectionSet);
 PROCEDURE GetGadgText(gad:Gadg; VAR text:ARRAY OF CHAR);
 PROCEDURE GetGadgdText(gad:Gadg; VAR dtext:DynStr);
 (* if dtext.str = NIL, this proc will create it *)
 PROCEDURE GetGadgHelpText(gad:Gadg; VAR dtext:DynStr);

 PROCEDURE GetGadgInteger(gad:Gadg; VAR ival:INTEGER);
 (* returns -1 on a list is none is selected *)

 PROCEDURE InclGadgModifiers(gad:Gadg; gms:ModifierSet);
 PROCEDURE ExclGadgModifiers(gad:Gadg; gms:ModifierSet);
 (* Incl/ExclGadgModifier() implementation started, not implemented for all

gadgs/modifiers *)
 PROCEDURE GetGadgModifiers(gad:Gadg; VAR gms:ModifierSet);

 PROCEDURE InclGadgSubModifiers(gad:Gadg; gsms:SubModifierSet);
 PROCEDURE ExclGadgSubModifiers(gad:Gadg; gsms:SubModifierSet);
 PROCEDURE GetGadgSubModifiers(gad:Gadg; VAR gsms:SubModifierSet);

 PROCEDURE InclGadgStatus(gad:Gadg; gs:GadgStatus);
 PROCEDURE ExclGadgStatus(gad:Gadg; gs:GadgStatus);
 PROCEDURE GetGadgStatus(gad:Gadg; VAR gss:GadgStatusSet):GadgStatus;
 (* reading a "Hit" clears it *)
 (* func result will always be "Hit" for a button, "On" or "Off" for a checkbox *)
 (* set/reset Disabld via Incl/ExclGadgModifier(), not here *)

 PROCEDURE AddGadg(container:Gadg; gad:Gadg);

 PROCEDURE GetContainer(gad:Gadg):Gadg;
 PROCEDURE GetFirstContainedGadg(cont:Gadg):Gadg;
 PROCEDURE GetNextContainedGadg(cont:Gadg):Gadg;

 PROCEDURE NullGadg():Gadg;
 PROCEDURE NullWndo():Wndo;

(* --- Edit Gadg Procedures --- *)

 PROCEDURE GetGadgCursor(gad:Gadg; VAR x, y:INTEGER); (* from 0 *)
 PROCEDURE SetGadgCursor(gad:Gadg; x, y:INTEGER);
 PROCEDURE SetGadgCursorX(gad:Gadg; x:INTEGER);
 PROCEDURE SetGadgCursorY(gad:Gadg; y:INTEGER);

 PROCEDURE ExistsGadgSelectText(gad:Gadg):BOOLEAN;
 PROCEDURE GetGadgSelectBlock(gad:Gadg; VAR row0, col0, row1, col1:CARDINAL):BOOLEAN;
 PROCEDURE SetGadgSelectBlock(gad:Gadg; row0, col0, row1, col1:CARDINAL);

 PROCEDURE GetGadgSelectText(gad:Gadg; VAR dtext:DynStr);
 (* creates dtext if .str is NIL. Clears the selection *)
 PROCEDURE DelGadgSelectText(gad:Gadg):BOOLEAN;
 PROCEDURE ReplGadgSelectText(gad:Gadg; dtext:DynStr):BOOLEAN;

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

(* --- Scroller Gadg Procedures --- *)

 PROCEDURE GetMinMax(gad:Gadg; VAR min, max:INTEGER);
 PROCEDURE AsgMinMax(gad:Gadg; min, max:INTEGER);
 PROCEDURE GetKnob(gad:Gadg; VAR low, high:INTEGER);
 PROCEDURE AsgKnob(gad:Gadg; low, high:INTEGER);

(* --- Choice/Menu Gadg Procedures --- *)

 PROCEDURE AddGadgText(gad:Gadg; text:ARRAY OF CHAR);
 (* also works for EditGadg, LabelGadg *)
 PROCEDURE RemoveGadgText(gad:Gadg; text:ARRAY OF CHAR);
 (* PROCEDURE AsgGadgInteger() sets selected choice *)

(* --- List Box Gadg Procedures --- *)

 (* for single col gadgs only *)
 PROCEDURE AddGadgListImg(gad:Gadg; Img:Images);
 PROCEDURE AddGadgListName(gad:Gadg; Name:DynStr);
 (* at end of list, Name is "deep" copied *)
 PROCEDURE InsertGadgListName(gad:Gadg; EntryIndex:INTEGER; Name:DynStr);
 (* New name ends up at this entry in the list, -1 means at end of list, 0 is

beginning of list *)
 PROCEDURE AddGadgListNames(gad:Gadg; Names:ARRAY OF DynStr; NumNames:INTEGER);
 PROCEDURE InsertGadgListNames(gad:Gadg; EntryIndex:INTEGER; Names:ARRAY OF DynStr;

NumNames:INTEGER);
 PROCEDURE RemoveGadgListName(gad:Gadg; ColNum:CARDINAL; Name:DynStr);

 (* for multi-col gadgs *)
 PROCEDURE AddGadgListNameCols(gad:Gadg; NumRows:INTEGER; Names:ARRAY OF DynStr);
 (* across the row, must be numcols x NumRows names in the array *)
 (* the input Names are copied, not just referenced *)
 PROCEDURE AddGadgListMixedCols(gad:Gadg; NumRows:INTEGER; Names:ARRAY OF DynStr;

Imgs:ARRAY OF Images);
 (* names and images filled in order across row *)

 PROCEDURE InsertGadgListNameCols(gad:Gadg; EntryIndex:INTEGER; Names:ARRAY OF DynStr);
 (* NYI *)

 PROCEDURE ClearGadgListNames(gad:Gadg; RefreshDisplay:BOOLEAN);
 (* also clears any selection *)
 PROCEDURE RemoveGadgListEntry(gad:Gadg; EntryIndex:INTEGER);
 (* removes entire row *)

 PROCEDURE GetGadgListEntry(gad:Gadg; EntryIndex:INTEGER; ColNum:CARDINAL; VAR
Name:DynStr);

 (* the DynStr must be already allocated or its .str field NIL *) (* deallocated
string if too few *)

 (* Name is "deep" copied *) (* disposes Name so .str is NIL if no such entry *)
 PROCEDURE GetGadgListIndex(gad:Gadg; Name:DynStr; ColNum:CARDINAL):INTEGER;
 (* -1 means it was not found *)
 PROCEDURE GetGadgListSelect(gad:Gadg; VAR index:INTEGER; VAR ColNum:CARDINAL);
 (* -1 means none selected *)
 PROCEDURE SetGadgListSelect(gad:Gadg; EntryIndex:INTEGER; ColNum:CARDINAL);

 PROCEDURE SetListEntryUser(gad:Gadg; EntryIndex:INTEGER; ColNum:CARDINAL;
userdata:ADDRESS);

 PROCEDURE GetListEntryUser(gad:Gadg; EntryIndex:INTEGER; ColNum:CARDINAL):ADDRESS;

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

 (* NOTE: Currently a double click on a list item will return two gadget hits, the first
a SelectEv w/o DoubleClick and the second a DblClickEv with DoubleClick in the
status *)

(*
VAR DebugMsg :IntuiMessage;
 DebugCntr :CARDINAL;
*)

(* Specialized usage *)

 PROCEDURE DebugMode(On:BOOLEAN);
 (* always draws boxes for SpaceSG and ContainerSG *)

 PROCEDURE RevealIDField(gag:Gadg):INTEGER;
 PROCEDURE RevealWndoField(gad:Gadg):Wndo;
 (* only the top level container will return non NIL. *)

 PROCEDURE RevealNativeScreen(wndo:Wndo; VAR sp:ADDRESS);
 PROCEDURE RevealNativeWindow(wndo:Wndo; VAR wp:ADDRESS);
 PROCEDURE RevealNativeGadget(gag:Gadg; VAR gp:ADDRESS);

 PROCEDURE RevealWndoObj(wndo:Wndo; VAR winObj:Object);

 PROCEDURE FindWndo(Nativewp:ADDRESS):Wndo;

 PROCEDURE GetGadgCurrentPlacement(gad:Gadg; VAR LeftTopOffset, WidthHeight:TwoD);

(* NOTES

1. For now, need to add gadgets "from the top down". ie, the container it is
added to must have a path up to a WindowContainer.

2. Pacer events, when enabled, are only put out if a second or more passes with
no other window event. They will come out at the rate of one a second.

3. A RETURN or TAB in a String or Integer box results in a SelectEv for it. All
String and Integer Gadgs have TabCycle attribute.

*)

END SimpleGUI.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
SimpleGraphics

 Section Head: Support
SimpleGraphics Module

SimpleGraphics is an object-oriented 2D graphics package for AOS4.

It derives from an M2 Windows API implementation that has been (partially so far)
transported as a layer above Intuition and Graphics library.

When fully implemented it will still be mostly a plotting package, but should be useful
and extendable via inheritance.

Classes in the basic package are:

Screen
A drawing surface, currently implemented by an Amiga Window.

BufferedScreen
An extension of class Screen, useful for animation.

GraphRegion
A rectangular regions within a screen.

GraphText
An extension of class GraphRegion that encloses text.

GraphPlot
An extension of class GraphRegion that includes a scaling REAL number
coordinate system and drawing operations.

GraphPlotWithAxes
An extension of class GraphPlot that supports placement of one or more horizontal
or vertical axes onto the plot.

GraphPlotIterator
A virtual class that can be used to draw data sets onto a GraphPlot.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Module_Obj

 Section Head: Support
Module Obj

This module can be used to implement a true Object Oriented package in base Modula-
2, including inheritance, method replacement by the child, with static and dynamic
class membership for an object.

In the future, if the ISO Modula-2 "Object Oriented Extensions" are implemented in
this compiler, it will take care of all the "manual" tasks required here to do true O-O,
and replace the need for this module.

Nevertheless, in case you want to experiment, some instructions for using module Obj
are in Obj.def.

(Also see module SimpleGraphics, currently the only module I've written using Obj.)

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Amiga_Specific

 Section Head: Aglet_Implementation
 Next subsection: Tips

Amiga Specific Info

Program Return Code

The shell return value, $RC, will be automatically set to 20 or above if the program
terminates due to an EXCEPTION (including Assertions.Assert() failure).

Otherwise, you can explicitly write to the variable SystemRTS.CLIReturnCode to
set this value.

Program Arguments - Shell and Workbench

ISO module ProgramArgs now has code to process arguments passed from the
Workbench startup message as well as from the CLI. The code attempts to pretty
much allow the ToolTypes in the WB icon to be the same as the CLI switches. This
means that the Aglet module ArgsSupport usually will work transparently whether
the program started via the CLI or the Workbench.

There are some rules for how you should set up your program argument templates
and ToolTypes for this to work well.

> the "Project" file(s) on which a "Tool" (program) starts up on, if any, must be
the beginning arguments and must not require the CLI arg key (ie, no "/K")

> ToolTypes are turned into following key or key keyvalue strings as if they had
come from the CLI that way. ToolType lines beginning with a "(" are ignored,
so that this (informal?) way of documenting what ToolTypes are available
without issuing them will still work.

> Multiple ToolType values separated by "|" may work for /F or /M CLI
templates, but only if things are kept simple.

> all the ToolTypes in the (first) Project icon will be applied, AND all the
ToolTypes which are in the Tool (program) file icon but not in the (first)
Project icon are also applied.

Hooks

Amiga "Hooks" are used in Aglet M2 PPC essentially as described in the Autodocs
for C hooks. You should, however, always use the procedure specially provided in
the Utility module as the .hEntry field of the Hook RECORD order to ensure that
any M2 required extra prolog and postlog processing is done.

For example, if you have written a String Gadget hook procedure:

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

PROCEDURE sgHookProcedure(hook:HookPtr; obj:ADDRESS;
msg:ADDRESS):CARDINAL;

and allocated a HookPtr "hk", you can set up the Hook as:

WITH hk^ DO
 hEntry := Utility.M2HookStub;
 hSubEntry := sgHookProcedure;
 hData := <whatever, usually ptr>;
END;

Note that the definition of a type HookFunc in Utility requires you to use
ADDRESS as the types of the two parameters. Within sgHookProcedure, you will
need to assign "obj" to a typed pointer, "SGWorkPtr", to use it to access the
required fields, and, in this case the "msg" parameter is simpley to be CAST to the
command, a CARDINAL.

Docs for each OS Hook need be consulted to determine what is actually being passed.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Tips

 Section Head: Aglet_Implementation
 Next subsection: Debugging

Language and Compiler Tips

Report Problems
Tom Breeden
Aglet Software
tmb@virginia.edu

Use M2IDE
If at all possible, for non-trivial projects use the M2IDE since it will track module
import dependencies and compile your modules in the correct order (use "Update"
on the program module after a "Refresh" if necessary).

GoldEd is a very nice commercial editor configurable for syntax coloring for
Modula-2. It is still available for sale at Dietmar Eilert's pages on the web.

Turbotext was a commercial editor that has now been made freely available.
Turbotext V2 runs well on the latest release of AOS4. For download, see the URL
http://www.monkeyhouse.eclipse.co.uk/amiga/turbotext/.

An editor interface is also provided for CygnusEd and for the nice freeware editor,
Annotate , available on OS4Depot.

Use the ISO Standard Library
There are a number of ISO compatible or ISO-like M2 compilers for other
platforms, eg. GNU Modula-2.

Starting your program via a WB Icon
Programs can be started from a shell with Amiga style arguments, or from the WB
with equivalent Tooltypes.

M2IDE: Placement of program source
Currently upon new project creation M2IDE expects that the program source file
will be in the current directory. You can get around this by adding your desired
directory to the Source Files name list immediately after starting up M2IDE ,
saving the project, and then restarting M2IDE on the project, upon which the
existing program (or program skeleton) file will be found. This will be stored in the
.PRJ file so needs be done only at the start of a new project.

M2IDE: Watch out for source file errors in the IMPORT section
M2IDE parses the import section on all project files it can find, and uses that
information to generate the dependency tree. If it does not seem to have identified
all the necessary modules, or does not seem to be able to open a dependent
module even though that module's path is in the Sources NameList, it is likely due
to syntax errors in the IMPORT section. (M2IDE now gives a pop-up warning in
these cases).

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

Asm Files
The compiler writes out the temporary #?.asm files (as well as #?.err files) to "T:".
It does not delete these files, expecting that T: is assigned to RAM: or RAD:. If that
is not the case on your system, you may want to clear out T: from time to time.

Object files (#?.o files) for implementation modules and Symbol files (#?.sbm) for
definition modules are written to the output directory (current directory) and
should be kept around to avoid the necessity of re-compiling support modules.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Debugging

 Section Head: Aglet_Implementation
Debugging Tips

Currently there is no source level debugger for Aglet M2 PPC , but there are a number
of ways to get debugging information (in addition to the tried and true one of inserting
write statements in the code using the standard modules STextIO and SWholeIO).

Also, note that the compiler will identify and generate no code for source statements
that are clearly unreachable. To be able to eliminate easily almost all of the run-time
overhead of a debugging statement, declare a constant at the top of your module such
as

CONST DEBUG = TRUE;

and surround your debugging statements with IF DEBUG THEN ... END. Simply
changing the constant to FALSE and re-compiling will remove the debugging code
from the output object file.

Note that you can also turn such debugging statements on/off on a per procedure basis
simply by including the CONST assignment locally within the procedure itself. At
compile-time the value will revert the global one outside of that procedure.

Other debugging possibilities include:

Module SymbolsRTS SymbolsRTSDebug
Modules Debugging and Assertions ModDebug
Module DebugIO ModDebugIO
Verbose Compile and Link VerboseCompile
Code Listing Compile CodeListing
Ranger Ranger
Grim Reaper Info GrimReaper
GDB GDB

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
SymbolsRTSDebug

 Section Head: Debugging
 Next subsection: ModDebug

SymbolsRTS

If you put an "IMPORT SymbolsRTS;" into your Program module, this enables the
default error-trapping routines to report the error location in terms of the module and
procedure name from the source code.

ie, you will get a message on exception like this:
,-------------------------------------
M2EXCEPTION
wholeDivException
ThisModule.ThisProc
'-------------------------------------

rather than this:
,-------------------------------------
M2EXCEPTION
wholeDivException
0x7fc0df7c
'-------------------------------------

To get the best results, you should also use the "-incldbg" ("-g") switch with Mod2Lnk,
which includes non-exported procedure names into the executable.

In addition, your own exception handlers may be able to make use of the procedure
SymbolsRTS.FindSourcePos() to report in the same way on any address within the code.
(The LineNum return value is not yet implemented).

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
ModDebug

 Section Head: Debugging
 Next subsection: ModDebugIO

DEFINITION MODULE Debugging;

This debugging module can pause and show some information or write it into
a debugging window.

PROCEDURE Debug(msg:ARRAY OF CHAR; i:INTEGER);
PROCEDURE DebugPause(msg:ARRAY OF CHAR; i:INTEGER);

PROCEDURE DebugOn(DebugLine:CARDINAL);
PROCEDURE DebugOff;
PROCEDURE DebugQuery(msg:ARRAY OF CHAR);

PROCEDURE IsDebugOn():BOOLEAN;

PROCEDURE DebugMemory(); (* NotYetImplemented *)
PROCEDURE DebugStack();

 DEFINITION MODULE Assertions;

 PROCEDURE Assert(b:BOOLEAN; msg:ARRAY OF CHAR);
 (* EXCEPTION if b is not true *)

 PROCEDURE AssertWarn(b:BOOLEAN; msg:ARRAY OF CHAR);
 (* Warns if b is not true, then continues *)

 PROCEDURE IsAssertException():BOOLEAN;

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
ModDebugIO

 Section Head: Debugging
 Next subsection: VerboseCompile

DEFINITION MODULE DebugIO;

Use this debugging module when you want to minimize the dependency on
other working M2 code. It is simply a call to the AOS4 library procedure
TimedDosRequester() with a 60 second timeout.

PROCEDURE DebugIOMsg(Title, Text:ARRAY OF CHAR; Buttons:ARRAY OF
CHAR):INTEGER;

 (* Use "|" to separate multiple buttons *)
 (* returns 1, 2, 3, ..., N, 0 indicate which choice, left to right, was taken *)
 (* NOTE: > Leftmost choice always 1, rightmost always 0. *)

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
VerboseCompile

 Section Head: Debugging
 Next subsection: CodeListing

Verbose Compile Listing

Using the "-verbose" compiler switch will display the name of each imported symbol
file as it is read, and, more importantly, will display each procedure name being
processed as well as the phase of processing it is in.

If, in the unfortunate (and hopefully, increasingly unlikely) case that the compiler runs
into an error from which it cannot recover, you can still discover in which procedure
the problem occurred, as well as the compiler operation (parsing, optimizing, code
generation, or file output).

Here is an example of the output for a verbose compile:

Mod2 v3.0 Compiler Alpha0 (3.4.2008)
Copyright (c) 2004 by Thomas Breeden
GuideMaker.mod

 <- M2Lv3:SystemRTS.SBM
 <- M2Lv3:Assertions.SBM
 ... <etc>
 <- AmigaGuideCmdStructs.SBM
 <- AmigaGuideFormat.SBM
 <- AmigaGuideParser.SBM
 <- AmigaGuideSyntax.SBM
 <- AmigaGuideSyntax.SBM
 <- GuideMakerDefs.SBM
 <- GuideMakerGUI.SBM
 <- GuideMakerInput.SBM
 <- GuideMakerNodeProcess.SBM
 <- GuideMakerShow.SBM
 ... <etc>
 <- M2Lv3:Str1.SBM

Delay Parse-Optim-Gen-Out
InitPgm Parse-Optim-Gen-Out
GetArgs Parse-Optim-Gen-Out
GetFile Parse-Optim-Gen-Out
NodeIndexArg Parse-Optim-Gen-Out
CmdIndexArg Parse-Optim-Gen-Out
NewNodeArgs Parse-Optim-Gen-Out
ShowNodeArgs Parse-Optim-Gen-Out
EditNodeArgs Parse-Optim-Gen-Out
NewLinkArgs Parse-Optim-Gen-Out
NewAttrArgs Parse-Optim-Gen-Out
UpdCmdArgs Parse-Optim-Gen-Out
NewCmdArgs Parse-Optim-Gen-Out

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

FileNameArgs Parse-Optim-Gen-Out
WriteItOut Parse-Optim-Gen-Out
ProcessLoop Parse-Optim-Gen-Out
GuideMaker Parse-Optim-Gen-Out
 -> GuideMaker.asm

Optimize Setting: DeadCode
SDK:gcc/bin/as -o GuideMaker.o GuideMaker.asm 0

.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
CodeListing

 Section Head: Debugging
 Next subsection: GrimReaper

Compiler Code Listing

Using the "-list" compiler switch will produce a detailed listing including the source
lines, the intermediate code, and the PPC Native code.

For example:

 128
 129 (*--------------------------------------*)
 130 PROCEDURE Delay(secs, millis:CARDINAL);
 131 (*--------------------------------------*)
 132
 |-------------Delay Entry-------------
 procentry Delay
 ;DetermineFrameSize
 ;save LR in caller's frame
 mfspr %r0,8
 stw %r0,4(%r1)
 ;alloc stack frame and save regs (STATIC)
 or %r11,%r1,%r1
 stwu %r1,-64(%r1)
 stw %r29,-12(%r11)
 stw %r30,-8(%r11)
 stw %r31,-4(%r11)
 ;establish the mp linkage
 stw %r14,12(%r1)
 addi %r14,%r1,12
 ;Move the overflow params
 ;Move the HIGH values
 ;DoStructureParmCopies
 ;Copy the static refcpyparams
 ;Copy the dynamic params
 ;ExitBasicBlockPre
 stw %r3,8(%r14)
 stw %r4,12(%r14)
 ;ExitBasicBlockPost
 |-------------Delay BlockCode-------------
 133 VAR t :AmigaTimer.TimerHandle;
 134 bRes :BOOLEAN;
 135
 136 BEGIN
 137
 138 bRes := AmigaTimer.OpenATimer(t, 1);
 prepcall OpenATimer
 paramref t OpenATimer $c0(0H)
 addi %r3,%r14,16
 paramcpy $c1(1H) OpenATimer $c1(1H)
 addi %r4,0,1
 ;ExitBasicBlockPre
 callext OpenATimer -> $t1
 bl 0
 or %r31,%r3,%r3
 ;ExitBasicBlockPost
 copy $t1 -> bRes
 or %r30,%r31,%r31

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

 139 bRes := AmigaTimer.SleepATimer(t, secs, 1000*millis);
 prepcall SleepATimer
 mul $c1000(3E8H) millis -> $t2
 lwz %r29,12(%r14)
 mulli %r31,%r29,1000
 paramcpy t SleepATimer $c0(0H)
 lwz %r3,16(%r14)
 paramcpy secs SleepATimer $c1(1H)
 lwz %r4,8(%r14)
 paramcpy $t2 SleepATimer $c2(2H)
 or %r5,%r31,%r31
 ;ExitBasicBlockPre
 stb %r30,20(%r14)
 callext SleepATimer -> $t3
 bl 0
 or %r31,%r3,%r3
 ;ExitBasicBlockPost
 copy $t3 -> bRes
 or %r30,%r31,%r31
 140 bRes := AmigaTimer.CloseATimer(t);
 prepcall CloseATimer
 paramref t CloseATimer $c0(0H)
 addi %r3,%r14,16
 ;ExitBasicBlockPre
 stb %r30,20(%r14)
 callext CloseATimer -> $t4
 bl 0
 or %r31,%r3,%r3
 ;ExitBasicBlockPost
 copy $t4 -> bRes
 or %r30,%r31,%r31
 141
 142 END Delay;
 ;ExitBasicBlockPre
 stb %r30,20(%r14)
 ;ExitBasicBlockPost
 |-------------Delay Exit-------------
 procexit Delay
 lwz %r14,0(%r14)
 addi %r11,%r1,64
 lwz %r29,-12(%r11)
 lwz %r30,-8(%r11)
 lwz %r31,-4(%r11)
 lwz %r1,0(%r1)
 lwz %r0,4(%r1)
 mtspr 8,%r0
 bclr 20,0
 ;ExitBasicBlockPre
 ;ExitBasicBlockPost

.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Ranger

 Section Head: Debugging
 Next subsection: GrimReaper

Ranger

Every OS4 programmer should have a copy of the System diagnostic tool, "Ranger", by
Steven Solie.

See OS4 Depot at:

http://os4depot.net/index.php?function=showfile&file=utility/misc/ranger.lha

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
GrimReaper

 Section Head: Debugging
 Next subsection: GDB

Grim Reaper

In some (desperate) situations inserting a "breakpoint" into the source code, along
with knowledge of LowLevel compiler information and a bit of PPC Assembly language,
can throw light on an obscure malfunction.

The inline assembly language feature of Aglet M2 PPC responds to the (non-standard)
PPC instruction, "illegal", by breaking into the Grim Reaper at exactly that point in the
code sequence.

for example the program:

(*###################*)
 MODULE TstGrimReaper;
(*###################*)
VAR i, j:INTEGER;
 (*-------------------------------------*)
 PROCEDURE P(j:INTEGER; VAR i:INTEGER);
 (*-------------------------------------*)
 BEGIN
 <*Asm(ON)*>
 illegal
 <*Asm(OFF)*>
 i := j+17;
 END P;
BEGIN
i := 11;
j := 13;
P(j, i);
END TstGrimReaper.

Will produce this upon reaching the "illegal":

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

If r3 does not contain 13, or the mem location pointed to by r4 does not contain 11 at
that point, you know that something has gone seriously wrong before then.

You can "Continue Program" after this "breakpoint" with no ill-effects.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
GDB

 Section Head: Debugging
GDB

A determined and patient programmer with a good knowledge of assembly code may
be able to make some use of GDB.

Even without debugging symbols, the Elf executable will have a symbol table that
includes the addresses of the entry points of all modules and procedures. You can use
the GDB command "info functions" to see these addresses, and then insert breakpoints
as desired.

Nevertheless, I find GDB extremely difficult to use, but have been able to use it to
tease out information I needed about what was happening at program startup, before
the modules DebugIO or Debugging are usable.

.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
M2_Examples

 Prev section: Aglet_Implementation
 Next section: IDE_Tutorial

Some Example and Test Programs

Classic
HelloWorld

Intuition etc.
ReadFontPrefs -Lists the five user-settable Prefs fonts (WB Icon, Drawer

Icon, Drawer Text, System Default, and Screen Font)
ReadPubScreens -Lists the names of all the Public Screens the user has set

up with Prefs.
ScanIFF -List outline of the IFF file or clipped material.
TstAutoRequest -Calls AutoRequest and EasyRequest.
TstDataTypes -Classifies a given file via DataTypes, and displays picture

datatype files into a window.

Reaction
CheckBoxExample -Reaction example translated from the SDK.
DateBrowserExample - <ditto>
FuelGaugeExample - <ditto>
GetColorExample - <ditto>
GlyphExample - <ditto>

Compiler
TstZeroDivide -Shows exception handling of a divide by zero exception.
TstRandomNumbers -Generates one set of ten random numbers from 0 to 99,

and another from 0 to 9999.

Aglet Support
TstArgsSupport -Parses its argument. Template is "-file/A"
TstDirUtil2 -Tests GetFileSize() function from module DirUtil2.
TstDirUtil3 -Tests AbsoluteFileSpec() function from module DirUtil3.
TstRandInts -Tests RandInts module distribution of x objects into y

cells.

Aglet Experimental
TstSimpleGUI -Demo of some gadget windows created with module

SimpleGUI.
TstRandomBoxes -Generates a display of a window with x boxes randomly

placed and colored within it.
TstGetFile -Shows module SimpleRequesters access to the GetFile

gadget.
TstSimpleGraphics -Demo of 2D drawing package layered on Amiga

GraphicsLib drawing routines.
TstSimpleImageHandler -Shows images and glyphs supported currently in this

module.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

TstSimpleMenus -Puts up a window with NewMenus menus created by this
module.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
IDE_Tutorial

 Prev section: M2_Examples
 Next section: M2_IDE

IDE Tutorial

This tutorial takes you through the steps in a coding task: adding a missing feature in a
working program (in this case M2IDE itself). It assumes that the project has already
been created and used to build one or more earlier versions of the program. (see
IDE_Using below for setting up a new project)

The problem fixed in this tutorial is that M2IDE has three windows, the Proj Window,
the NameList Window, and the BuildPrefs Window, but on right-press the program
menu did not appear when the BuildPrefs Window is active.

Evidently, I had neglected to attach the menustrip to that window. In this tutorial, we
will correct that using the IDE environment.

Start from the CLI with this command:

 |
 | 4.Work:Aglet/M2-v3/Compiler/wrk> run m2ide m2ide
 |___

A file "M2IDE.prj" does exist in this directory, so it is opened and read, displaying the
two windows below (as well as the logging window).

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

The Proj window on the right shows the shows the project specific files. The NameList
window on the left starts off showing the Miscellaneous file list, into which in this case
I had put two "library" support Definition module sources, so I can quickly refer them
them while programming.

Using the cycle gadget in the NameList window, we can see the list of “registered”
modules which were read in from the *.prj file. These are essentially all the
Amiga/Reaction/ISO/Aglet support modules that we assume to be a fixed context and
do not want or need to edit or re-compile while we are working at this project.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

Note that, at this point, the Proj window shows all its modules as up-to-date.

Deciding where to start

In this case the first programming change stems from the fact that the BuildPrefs
window display is handled entirely within module M2IDEcomp, and that it uses
module SimpleGUI, which monitors window, gadget, and menu events for it. The
program commands are generated within M2IDEcomp, but passed onto module
M2IDEmsg for processing.

We need to add a way to also pass on menu events from M2IDEcomp. Thus we will
have to change a procedure declaration in the Definition module to include an
menu support in the window.

So, a double click on the DEF column of the M2IDEcomp row in the Proj window
gets that file opened into the editor.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

IDE_Tut1

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
IDE_Tut1

 Section head: IDE_Tutorial
IDE Tutorial, continued

The Definition Module Edit

The procedure interface to be changed is that of GetPrefsWndoCmd(). An extra
parameter must be added to return the menu EventInfo.

ie, this:

|
| PROCEDURE GetPrefsWndoCmd(VAR cmd:Commands;

VAR args:DynStr):BOOLEAN;
| (* args must exist *)
|___

is edited to this:

|
| PROCEDURE GetPrefsWndoCmd(VAR cmd:Commands; VAR args:DynStr;

VAR ev:EvntInfo):BOOLEAN;
| (* args must exist *)
| (* if returns TRUE and NullCmd, ev will carry a Menu event *)
|___

Now with the DEF column selected in the M2IDEcomp row, hitting the COMP
button in the Proj Window compiles the desired Definition file, giving this text in
the logging window:

|
| Aglet Mod2
| PROGDIR:Mod2 -rngchk -ovflchk -instrubuf 2500 -optlev 2
M2IDEcomp.DEF
|
| Mod2 v3.0 Compiler Alpha0 (29.5.2008)
| Copyright (c) 2004 by Thomas Breeden
| M2IDEcomp.DEF
| <- M2Lv3:SimpleGUI.SBM
|
| -> M2IDEcomp.SBM
|___

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

M2IDE now has updated the Project Window to show that the modules dependent
on M2IDEcomp.def need to be recompiled.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
IDE_Tut2

 Section head: IDE_Tutorial
IDE Tutorial, continued

Attaching the Menu

File M2IDEcomp's window handling implementation code must be edited so that
the program menu appears when the BuildPrefs window is active.

This is easy to do using these two procedure already existing in module
M2IDEmenus :
 __
 |
 | PROCEDURE ShareMenu(AccessoryWndo:Wndo);
 | PROCEDURE UnshareMenu(AccessoryWndo:Wndo);
 |___

The main program window, handled by module M2IDEgui, creates and owns the
menu structure, so all we have to do in M2IDEcomp is make sure it is attached to
the BuildPrefs window when it is opened, and removed before it is closed.

Double click on the MOD column of the M2IDEcomp row in the Proj window to get

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

that file opened into the editor.

There is one place where the window is opened, that we just edit to this:
 __
 |
 | OpenWndo(PrefsWndo, wPosition, "M2IDE Build Prefs");
 | IF PrefsWndo # NullWndo() THEN
 | ShareMenu(ProfsWndo);
 | RETURN TRUE;
 | ...
 |___

The unshare call needs to go before the CloseWndo() in the exported procedure
M2IDEcomp.HideBuildSettingsWin().
 __
 |
 | (*==============================*)
 | PROCEDURE HideBuildSettingsWin;
 | (*==============================*)
 |
 | BEGIN
 |
 | IF IsWndoOpen(PrefsWndo) THEN
 | UnshareMenu(PrefsWndo);
 | CloseWndo(PrefsWndo);
 | END;
 |
 | END HideBuildSettingsWin;
 |___

Another place to put the unshare call is into the termination code of the module
M2IDEcomp, in case the program closes down while the BuildPrefs window is
open.
 __
 |
 | FINALLY
 | ...
 | IF PrefsWndo # NullWndo() THEN
 | IF IsWndoOpen(PrefsWndo) THEN
 | UnshareMenu(PrefsWndo);
 | END;
 | DisposeWndo(PrefsWndo);
 | ...
 |___

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
IDE_Tut3

 Section head: IDE_Tutorial
IDE Tutorial, continued

Handling the Menu Event

In M2IDEcomp.GetPrefsWndoCmd(), events that SimpleGUI has been
accumulating for the BuildPrefs window are being unqueued. The update needed
here is simply to check for and return the EventInfo parameter in the case of a
MenuEv.

Just add a check into the WHILE loop:
 __
 |
 | WHILE GetWndoEvnt(PrefsWndo, ev) DO
 |
 | ...
 |
 | ELSIF ev.ev = MenuEv THEN
 |
 | cmd := NullCmd; (* but return TRUE *)
 |___

GetPrefsWndoCmd() is called by a procedure that acts as the main input loop for
the program, M2IDEmsg.GetCmd(), defined as:.
 __
 |
 | PROCEDURE GetCmd(wndo:Wndo; VAR cmd:Commands; VAR
args:DynStr);
 |___

So, in that procedure within M2IDEmsg, we change the call to
GetPrefsWndoCmd() to receive the EventInfo parameter and use a procedure,
HandleMenuEvent, to change it into a program command (as is done with the
other two windows):
 __
 |
 | IF GetPrefsWndoCmd(cmd, args, ev) THEN
 | IF (cmd = NullCmd) AND (ev.ev = MenuEv) THEN
 | HandleMenuEvent(ev, done, cmd, args);
 | ELSE
 | done := cmd # NullCmd;
 | END;
 | ...
 |___

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
IDE_Tut4

 Section head: IDE_Tutorial
IDE Tutorial, continued

Rebuilding the Program

The above should be the necessary edits.

Now, in the Proj window, selecting the MOD column in the row with M2IDE (the
program module), and clicking on the UPDATE button does all the necessary
recompiles.

The IDE compiles all the pending to-be-compiled Implementation modules
successfully except for M2IDEcomp.mod. The Logger window shows an error was
found,

and the project window shows M2IDEcomp.mod still requires compiling.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

The IDE has sent a message to the editor and checking the editor window for
M2IDEcomp.mod we see that it is positioned at the point of the compile error, with
the M2 error message in the window title bar.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

Oops. The error is clear: a typo of "ProfsWndo" instead of "PrefsWindo". The NEXT
button in the Proj windows does not find another error.

The BuildPrefs have been set up previously, and were read in with the *.prj file, so
we should be able to complete the build immediately. Since there is only one
module to be compiled, we can select M2IDEcomp MOD and click on the Proj
window "+" button, which causes the IDE to first compile the selected
Implementation module and then run Mod2Lnk on the project. This is successful;
the logger window shows a successful link.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

Evidently, the design of the inter-module calls of M2IDE could use some attention,
but these warnings have been investigated and the calls determined not to be a
problem.

Now if we quit the running M2IDE and restart it, the problem is fixed: when the
BuildPrefs window is open and active, the program Menu still appears and is
effective!

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
M2_IDE

 Prev section: IDE_Tutorial
 Next section: Version_History

Integrated Development Environment

M2IDE IDE
Using M2IDE IDE_Using

Project Window Project Win
Name List Window Name List Win
Build Prefs Window BuildPrefs Win
Logger Window Logger Win
Text Search Window Text Search Win

Project Menu Project Menu
Settings Menu Settings Menu
Tools Menu Tools Menu

Notes IDE_Other

.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
IDE

 Section Head: M2_IDE
 Next subsection: IDE_Using

M2IDE

M2IDE is the first step toward an Integrated Development Environment for Aglet
Modula-2 . Though it currently lacks a lot of what one would want in an IDE, I think it
still can make developing with Modula-2 easier and faster.

Requirements

M2IDE makes use of ARexx for communicating with the selected editor. RexxMast
must have been started and be working well.

The logger window utilizes the PIPE device. That device should be in your
SYS:Devs/DOSDrivers directory.

Features

> Analyzes all the directly and indirectly imported project modules for a program
and determines the appropriate compile order for definition and implementation
modules.

> Allows standard and other "library" modules to be excluded, as you normally
don't want to change or re-compile these.

> Displays the set of project modules in a "point-and-click" window.

> Has "Compile" (and "Link") buttons to act on the selected module via a button
click.

> Communicates with an editor (currently GoldEd, Annotate, CygnusEd, or
TurboText) to automatically save any of the concerned files before the compile
and to move the editor's cursor to the error position of a compile error.

> Has an "Update" button to do a build on the selected module, ie automatically
compile all (and only) the out of date modules and their dependencies in the
correct order to create the ready to be linked set of object modules.

> Provides a simple GUI to most of the compiler and pre-linker switches.

> Global text search all project files.

> Menu item to open M2IDE.guide

> Help hint bubbles

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
IDE_Using

 Section Head: M2_IDE
Using IDE

Starting

The program template is: "FILE,-EDITOR/K,-D=-d/S".

"FILE", is the name of the the project (.PRJ) file. If no <File>.prj is found, a basic
project will be created in the current directory with the program module assumed
to be named <File>.mod and located as described below.

"-EDITOR" specifies on startup the name of the editor interface program (plugin)
eg, "PROGDIR:GedFront", or "PROGDIR:TtxFront". If none is given,
"PROGDIR:EdtFront" will be used.

(the -D switch is for internal debugging of M2IDE itself)

Setting up a New Project

Any non-trivial program will broken up into multiple modules, each of which will
need to be compiled (ie, not including stable support modules). These can be
created with the editor as needed. Once they are imported into <File>.mod (or
one of its dependencies) a Refresh will bring them into the project.

My suggested practice is to create a project directory with two sub-directories, one
named "mod/" and the other "def/". If there is an existing program Module copy it
into the "mod/" subdirectory, and any existing project IMPLEMENTATION and
DEFINITION modules into the "mod/" and "/def" sub-directories respectively.

See notes under the "Open" in Project Menu.

On prj file creation, all the library and other established support modules from
Aglet will be automatically read into Registered Modules name list (from the file
"regmods.nl") so the M2IDE will not try to re-compile them even if used in your
project.

The symbol files (.SBM) needed for compiling with IMPORTed module are
searched for in the project's directory, and in the assignment "M2LV3:", set up as a
multi-assign to the Aglet-supplied support modules, as described in the installation
instructions.

Finally, you may want to put some files into the Misc Files name list for quick
access to reference and note files useful for the new project.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

Windows

Project Win, Name List Win, Logger Win, BuildPrefs Win,Text Search Win

Menu

Project Menu, Settings Menu, Tools Menu

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
IDE_ProjWin

 Section Head: M2_IDE
M2IDE Project Window

Def/Mod List

Double Clicking on one of the DEF or MOD column entries will send a message to
the editor to open (or bring-to-front) the corresponding source file.

Buttons

Refresh Re-check the file dates, and import dependencies, and re-
calculate the compiles needed for the entire project.

Update Compile, in appropriate sequence, all Definition and
Implementation modules used or referenced by the selected
module.

Comp Compile the selected module. If it is a Definition module,
mark as "to-be-compiled" any modules dependent on this one.

Link Link the root module (program).

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

"+" Compile the selected module and then Link the root module
(program).

Next Look for an T:*.ERR file for the selected module, and if found,
open the editor at the next error position indicated for the
source file.

NOTE:
1. The buttons (except for "Refresh") require a currently selected DEF or

MOD column entry.
2. The "Comp" and "Update" buttons automatically send a request to the

editor to save of the source file(s) before compiling.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
IDE_NamListWin

 Section Head: M2_IDE
M2IDE Name List Window

Name Lists
Sources Path List of paths (besides the project file directory) M2IDE is

to use in searching for DEFINITION and
IMPLEMENTATION source files for the project.

LibSources Paths <NYI>

Registered Mods These modules are "registered" with this project as "library
modules", ie, they are not brought into the Project Window
and will not be compiled in building the project. If used in
the project, their symbol and object files are expected to be
found in one of the directories of the multi-assign,
"M2LV3:".

Root Mods <Currently one root module is allowed, the program file.>

Misc Files A list of files useful for the project, but not part of the
project source. eg, documentation, notes, reminders,
library DEFINITION modules. Double clicking on one of
these names will open the file into the editor.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

Buttons
AppendNL Open a file of names, and merge them into the current

project Name List

SaveNL Save the current project Name List as a text file of names.

Supplied Name List Files
For use in the Registered Mods name list, the following text files of names are
copied over during the installation:

System.nl Compiler RTS modules
Amiga.nl Amiga library modules
ISO.nl ISO Standard Library modules
Reaction.nl Reaction Support
Sysmod.nl General programming support modules distributed with

Aglet M2 PPC
Experimental.nl In-progress modules distributed with Aglet M2 PPC

RegMods.nl All the above name lists combined. The program
automatically reads in this .nl file on creation of a new
project. Generally, this is what you want in order not to edit
or compile any of the supplied support Modules, which
remain stable across your own projects.

.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
IDE_CompPrefsWin

 Section Head: M2_IDE
M2IDE BuildPrefs Window

To permanently associate the comp or link settings with the open project you need to
hit the "Assign Proj (Comp)" or the "Assign Proj (Link)" buttons.

As of now, only a project-global compiler/linker settings configuration is available. In
other words, if the .prj file contains compiler settings, they will used for all modules in
the project (unless changed by the user via the Build window).

Note: These buttons assign the setting to the project, but there is no project auto-
saving; you still need to save the project itself for the assigned settings to be available
next time you start the project up. You can do this from the File | Save menu item or
from the Needs Saving button that appears at the bottom of the main project window.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

The global environmental settings (see Settings Menu) are used if the project being
opened has no associated project specific setting.

Currently, from the M2IDE GUI, there are only two settings for the "StaticLib" to be
included in the link, "<none>" or "SDK:clib2/lib/libm.a".

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
IDE_LoggerWin

 Section Head: M2_IDE
M2IDE Logger Window

All output from the compiles, links, and the Get Clients command appears in this
window.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
IDE_TextSearchWin

 Section Head: M2_IDE
M2IDE Text Search Window

Controls
String Input Box Enter the text for which you want to search.

">" Button Start the search (equivalent to the Enter key in the String
box.

Def Box Check this to include project DEFINITION modules in the
search.

Mod Box Check this to include project IMPLEMENTATION modules in
the search.

Case Box Check this make the search case-sensitive.

FileList
Files found by the search are listed in the bottom part of the window.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

Double clicking on one will ask the editor to display that file at the position of the
first instance of match. "FindNext" commands in the editor will enable you to step
through all matches in the file.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
IDE_ProjMenu

 Section Head: M2_IDE
Project Menu

Open
Open an existing (or create a new) *.prj file. Only one can be open at a time.

If no .prj file exists in the directory selected, M2IDE will create (but not yet save) a
new project.

It expects to find the program module in a subdirectory "mod/" and will
automatically add "mod/" and "def/" to the sources path list. The usual setup is that
all the project's IMPLEMENTATION modules and the program module will go into
a "mod/" subdirectory under the project's directory. Ditto for DEFINITION modules
and a "def/" subdirectory.M2IDE automatically adds these two sub-directories into
the Sources Path list in the Name List Window. (You will need to create these
directories yourself, however).

You can, however, put everything in the project directory itself, or set up a
different arrangement via changes to the Sources Paths list in the Name Lists
Window. eg,

Multiple project files could go into the same directory, with specific mod and def
sub directories for each one, such as "mod-PgmA/", "def-PgmA/", "mod-PgmB/",
"def-PgmB/", "mod-PgmC/", "def-PgmC/". You need to explicitly put the appropriate
sub-directories into the Sources Path list in the Name List Window for the
appropriate project.

If there is no existing program module with the project name, M2IDE will offer to
create a template program module file, preferably in the "mod/" subdirectory, but
instead in the *.prj file directory if there is no "mod/" subdirectory.

Save
Save the currently open *.prj file.

About

Guide
Runs Multiview on the AmigaGuide AgletM2PPC (this document).
M2IDE expects that AgletM2PPC.guide resides in "PROGDIR:Docs/".

Close
Closes the currently open Project without quitting the program.

Quit
Exit the program. If the *.prj file settings have changed, you will be asked if you
want to save it.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
IDE_SettingsMenu

 Section Head: M2_IDE
Settings Menu

Save Window Layout (ENVARC:)
The current positions and sizes of the M2IDE Project, Name Lists, and Build
Settings windows will be saved in ENVARC.

Save Comp Setting (ENVARC:)
Save the compiler setting into ENVARC. These will be used for all new projects and
for any project that has not had an explicit set of compiler settings assigned to it
via the Build Prefs window button.

Save Link Setting (ENVARC:)
As above, but for linker settings.

Make Icons?
If checked, then when the project file is saved, an icon will be created for it, with
M2IDE as its default tool.
Also, after a successful link, an Tool icon will be created for the executable file if
none already exists.

Show Hints?
If checked, then gadget "bubble" hints are turned on.

Show Build Prefs ...
Open the Build Prefs window if it is not currently open or bring it to the front if it
is.

Show Name Lists ...
As above, but for the Name Lists window.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
IDE_ToolsMenu

 Section Head: M2_IDE
Tools Menu

Get Clients
List all the client modules (in the Logger Window) of Proj window's currently
selected DEF file.

Mark Mods Uncompiled
Mark all the MOD files listed in the Proj window as needing compilation.

This will only affect the IMPLEMENTATION modules. The modules' public
DEFINITION keystamp is unchanged, so any mods not in your project which might
depend on project modules will not need recompile.

Note that the mark-uncompiled action does not change the time-stamps on the files
themselves, so a Refresh in the Proj window will undo this marking.

Mark All Uncompiled
Mark all files listed in the Proj window as needing compilation, both DEF and
MOD.

As above, except that any module not in your project that imports one of the
project mods will require re-compiling.

Make Build File
Write out a ADOS shell script which can be used to compile the whole project from
scratch, in the appropriate order.

StringSearchFiles...
Opens up the project Text Search Window which can be used to automate a global
string search through the project files.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
IDE_Other

 Section Head: M2_IDE
M2IDE Other Info

Environment Variables

M2IDE/DefaultRegMods Name of a Names list file to use to load registered modules
upon new project creation. Default is "PROGDIR:RegMods.NL"

M2IDE/CompPrefs <set by M2IDE>
M2IDE/LinkPrefs <set by M2IDE>
M2IDE/PgmSettings <set by M2IDE>
M2IDE/WinPos <set by M2IDE>

Installation

Executables: M2IDE, EdtFront, M2IDELogger

Uses "PROGDIR:" for starting compiler, error lister, and pre-linker as well, so the
above executables should be installed in the same directory as Mod2, M2Err, and
Mod2Lnk.

AmigaGuide

Currently (AOS v4.1 upd 4), display of an image link by Multiview (or other
program) using the AmigaGuide datatype into the AG window is OK so long as the
user does not attempt to resize the window while the image is up . Resizing will
usually hang the OS.

The AgletM2PPC.guide file has a number of these linked images. You can safely
view the image and click on the "Retrace" button, just don't click on the resize
gadget while the image is displayed.

KingCON

If you run M2IDE from the KingCON shell it is a good idea to redirect output to
NIL:, eg, "run M2IDE filename > NIL:".

Otherwise, KingCON will block M2IDE whenever a partial line is typed into the
KingCON window (even though M2IDE redirects standard output).

.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Version_History

 Prev section: M2_IDE
Release History - Current

Feb 15, 2012 - Release 3.2

Compiler - Mod2 v3.2 Beta (13.2.2012)

> Bugfixes:
WB Started Pgms - Some programs, if started from WB, were crashing

the system on exit. SystemRTS now saves/restores
CR.

CAP - Standard func CAP() was generating bad code in some
circumstances.

SYSTEM.Setsreg() - Proc SYSTEM.Setsreg(), set special PPC reg, works
now (except for FPSCR).

DIV/MOD - Code generated for structured variables was not
calculating DIV and MOD correctly, eg. "ar[2] MOD
ar[3]" could give the wrong result.

Compile Listing - The compiler was sometimes giving an index
exception when the "-list" CLI switch was used.

POINTER declares - Some declarations of pointers to never declared types
were not being detected. e.g. in
"TYPE arrtyp = ARRAY[0..9] OF POINTER TO <fwdtype>"

FOR limit - By ISO, the FOR loop limit must be expression
compatible with the index variable. This was not
being checked by the parser.

FOR index - Counting down the the MIN(CARDINAL/INTEGER) or
up to the MAX(CARDINAL/INTEGER) was not
working correctly.

VAL() Glitch - The compiler was not accepting the valid syntax
"VAL(REAL, r)" if r is a REAL.

Overflow Checking - For the small sized whole number types (INTEGER8,
CARDINAL8, INTEGER16, CARDINAL16), some
arithmetic expressions with constants were not
detecting overflow.

Amiga Version String - The executable's Amiga Version string is now really
Amiga standard.

> Updates:
Local Modules - Local modules are now fully implemented. An empty

BEGIN section is accepted and the FINALLY sequence
follows ISO specs.

ISO Tokens - now "(!" is accepted as "[" and "(:" as "{", similarly the
ending bracket/brace. Compiler will now accept any
character code within a string literal except 0C, LF,
CR, and FF.

Embedded assembler - Added PPC opcodes for fsqrt and fsqrts.
FOR loop code gen - Code generation for FOR loops improved. Overhead of

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

empty FOR loop reduced about 30%.
TSIZE() - SYSTEM.TSIZE() function with one parameter is

implemented now.
SIZE() - Per ISO, SIZE() and TSIZE() call on a variable must be

an "entire designator".

Pre-Linker - Mod2Lnk v0.5 (12/21/2011)

Exit status - Now Mod2Lnk returns an appropriate Amiga status
code reflecting its own processing, the assemble of
<pgm>_start, and ld 's run.

Newlib .so - Mod2Lnk will link with "libc.so" if requested.

Aglet Modules

IconSupport - BUGFIX: mode UpdateWIM was not preserving all the
current tooltypes.

- UPDATE: New proc, "ReadProjIcon()".
- UPDATE: New proc, "WriteToolIcon()".

SimpleGUI - BUGFIX: two SelectEv events could be queued for the
StringSG.

- BUGFIX: ShowWndoBusy() to turn busy icon off was
not working.

HashT - BUGFIX: CreateHT() was ignoring parameters hfunc
and cfunc.

- UPDATE: Increased the MaxTableSize to 500000.
- UPDATE: Replaced the exported string hash funcs

with a better one.
PipeIO - UPDATE: proc OpenPipeUnique() was added.

- UPDATE: procs ReadTimeoutExceptionOn() and
ReadTimeoutExceptionOff() were added. When "On"
then Reads can timeout, and Read() will return
FALSE. ReadPipeLines() can return with an empty or
incomplete line.

MachineEnv - UPDATE: proc GetTotalmemory() was added.
ArgsSupport - UPDATE: proc dProcessCLI() added to support long

lines.

Amiga Modules

SDK 53.20 - Most DEFINITION modules synched with .H files from
SDK release 53.20.

Reaction Modules

IconSupport - STRINGA_DisablePopup tag added.

M2IDE - M2IDE v0.6 (02/02/2012)

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

Proj Global Text Search - New feature, and window for results: Text search of
all project files (currently using system "Search"
program.

Help Hint Bubbles - Most gadgets have pop-up help hints.
AmigaGuide docs - Will open via a menu option.
Executable File Icon - If "MakeIcons" is checked, creates a icon for the

executable after linking. Before, only the .prj file got
an icon.

Unfound File - Now displaying a "<?>" in the last column of the main
window if one or both of the DEF and MOD files for
the module was not found.

Import Parsing Fails - Pop-up warning when parsing does not succeed for
the IMPORT section of a module; project
dependencies will not be complete.

Import Parsing Stack - Size of parsing stack doubled. M2IDE can now parse
very big projects (bigger than the compiler).

Unique PIPE Names - Pipe communication glitches no longer will require
rebooting.

Mark All Mods Uncompiled - To complement the Mark All Files Uncompiled option,
which includes all the DEFINITION files as well.

Pgm Module Template - On creating a new project, if the program module is
not found in the selected directory, or a "mod/"
subdirectory, then M2IDE will create a simple
skeleton program file for the project.

Link Result Status - M2IDE message box reports success or failure of the
whole linking operation.

NewLib - C NewLib .so library can be chosen to implement ISO
RealMath instead of static CLib2 if desired.

Spaces in Paths - Spawned compiler and linker commands and ARexx
messages should all have appropriate quoting for
files/paths with spaces.

Import Parsing - Certain non-ISO (and non-Aglet) IMPORT syntax will
be tolerated without error by M2IDE dependency
analysis, eg, "IMPORT S : SYSTEM;" as found in
M2Amiga. Here the alias name is ignored.

Apr_5_2011 Feb_28_2010 Dec_16_2009 2008

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Apr_5_2011

 Section Head: Version_History
Release History - 2011

Apr 5, 2011

Compiler - v3.1 Beta (13.2.2011)

Bugfixes:
TwoPower const Expressions "CARDINAL8 * TwoPowerConst ->

CARDINAL32", were not generating correct
code.

Char Consts "CAP(c)", where c was a CONST CHAR was
giving a compile error.

Const params to std funcs "INT(801.0)", would malfunction on the second
use.

M2IDE - New editor "plug-in", AnnFront, integrates editor Annotate
into M2IDE.

- Status message now reports "ok" on successful compiles.

Amiga Libs - updated for release 53.20
- DOS FileHandle and FileLock are now opaque types rather

than ADDRESS.
- Rasters is using AreaInfoPtr instead of ADDRESS for

appropriate parameters.
- GraphicsInterfaces VectorBuffer parameter for InitArea()

changed from ARRAY OF POINT to ADDRESS. (It was not
really an array of point).

Reaction - updated for release 53.20
- ReactionPrefs and UserInterfPrefs moved to directory

"Reaction" from directory "Amiga".

ISO Mods - RealStr v0.3 (10.10.2010)
> Rounding is now implemented fairly correctly.
> Changed code to compensate for a very infrequent

glitch in compiler's TRUNC() code generation.
> RealToFixed() is now working for reals bigger than

approx 4294967300 (ie, 2^32-1)
> WriteReal() and RealToFloat() now use the output space

as ISO specifies.

Aglet Mods - AmigaTimer v1.6 (13.12.2010)
> Supporting new timer modes for "waituntil" and

"entropy". Changed mode from a number to an
enumeration type, TimerFlavors.

> New procs GetEClock(), GetEClockFreq() and
GetEntropyATimer()

> A TimerHandle is no longer needed as a parameter for

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

procs GetSysTime() and GetSysTOD()
- StrMacros v0.2 (3.4.2011)

> missing comma between parameters in a macro call no
long hang the program.

- SimpRexx1 v0.3 (13.3.2011)
> Added automatic single quotes around Port name

(necessary if port name does not happen to be all caps.
- PipeIO v0.6 (16.2.2011)

> Added ReadPipeLine() for more efficient buffered
reading line by line.

> Similarly, added dReadPipeLine() unlimited line lengths.
> added a Timeout Exception feature.

Experimental - OsRun v0.3 (27.3.2011)
> added Proc SpawnRedirect() to provide for specifying

the standard in/out/err
> added Proc BreakOffspring() to send ^C to all Spawned

children.
> added Procs WaitForStarted() and

CheckForProcessRunning().
- SimpleGraphics v1.3 (16.2.2011)

> Implemented BufferedScreens, at least enough for
straightforward animations.

> Methods ForeColor Get/Set moved from class GraphPlot
up into parent class GraphRegion.

> other bug fixes
- Obj v1.1 (16.5.2010)

> added func ooClassSameOrDescendent() so that you
can test this, not just assert it.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Feb_28_2010

 Section Head: Version_History
Release History - 2010

Feb 28, 2010

Compiler - v3.1 Beta1 (22.2.2009)

Bugfixes:
Literal Set Expressions -expressions like "3 IN BITSET{0,3)" were not

generating correct code.
Shift code - SHIFT() to left for set sizes < 32 was resulting in

erroneous relation expressions and shift amount of 0
was generating incorrect code.

Runtime checking - wrong bits in XER register were being referenced
Subrange of CHAR - compiler was rejecting subrange
with literal chars like ['a'..'z']

Set of Boolean - compiler was rejecting type def SET OF BOOLEAN
Comparison Comparisons - expressions like "(i = 5) = (j = 10)" were not handled

correctly.
Const Boolean Expression - const boolean expressions like "TRUE OR TRUE" and

"DEBUG OR FALSE" were not being handled correctly.
Real LiteralExpressions - compiler rejected expressions like "12.343 - b", where

b is REAL because the literal number was being
treated as LONGREAL only.

Changes:
Default instruction buffer size - Changed the default to 5000. Use the "-instrubuf"

switch to compile with a different size

M2IDE - new CLI startup switch, "-Editor"
Specifies on startup the name of the "...Front" editor interface
program eg, "PROGDIR:GedFront", or "PROGDIR:TtxFront". If
none is given, "PROGDIR:EdtFront" will be used as before. The
EditorInterfacePort still must be "M2IDEFRONT".

- Removed LogWindowToFront() calls before each compile and
each link. These made it extremely hard to do anything else
while compiling a big batch of modules.

- Changes in editor interface program, GedFront, for Golded v8:
> Error display in editor had broken with switch from

GoldEd v7 to v8.
> On startup of GoldEd, the "HIDE" switch was removed -

does not work in GoldEd v8.

System Mods - Bugfix: The default input/output window opened when a
program is started from Workbench were not taking input from
the keyboard. Now using CON: rather than RAW: for this
window.

- Module DebugIO (and thus also Debugging.DebugPause) now
has a 60 second timeout.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

Aglet Mods - DateSupport module procs now interpret "AM" and "PM" in a
time string.

- StrSubstitutes.DoSubst() now implements backslash as an
"escape" char for brackets. This also affects modules StrMacros
and SimpleStrSubstitutes.

Experimental - New module for programatically starting independent CLI
processes: OsRun.

- New module, DirUtilsDyn, using dynamic rather than static
strings for file specs.

TestManager - Created a q+d program to manager automated runs of the tgM2

test generator program. A dozen or so tgM2 driver files put
together to create the beginning of an effective compiler
regression testing suite.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
Dec_16_2009

 Section Head: Version_History
Release History - 2009

Dec 16, 2009

Compiler - v3.1 Beta1 (16.12.2009)
- The compiler itself is now PPC native, and is significantly

faster!
- The size limit on procedures is now probably large enough for

any sane program.
- A bug which caused extremely excessive stack use was fixed.

Now 40 or 50K should be enough for almost any compile.
- Some code generation errors were fixed.
- Fixed problem with Opaque pointers resolved within the

IMPLEMENTATION module by imported pointer types.
- Added compiler warning: OpenArrayCopyWarn.
- SDK 53.8+ now using the GNU assembler v2.18 vs. 2.14 in

earlier SDKs. This required that some instructions be output
slightly differently.

- Certain "recording" forms of FP instructions no longer
generated, since Sam 440ep does not support them.

(Pre)Linker - Mod2Lnk recognizes a "-stack" switch and inserts the
"$STACK:xxxx" cookie into executables.

- The .asm files no longer need be kept around. All (pre)linking
information is in the object file now. Asm files are written to T:

- Added the "-g" debug switch, which causes both exported and
non-exported symbols to be put into the Elf symbol table so that
SymbolsRTS can find them as well.

M2IDE - v0.3 (30.8.2009)
- Option "Make Icons?" added for the project file save.
- Fixed problem of GR on exit if M2IDE changed its current

directory.
- Multiselect now supported for the "Misc Files" file requester.

Amiga Modules - Added Definition files for about 25 more Amiga Libraries, and
all supplied Amiga definition files (over 150 of them) were
brought up to the v53.13 SDK.

- The TextEditor gadget is now working much better, as the
Definition file now adjusts to a glitch in the SDK's .h file.

Aglet Modules - System module SymbolsRTS was introduced for better
debugging of exception locations.

- CLI program arguments and Workbench ToolTypes are
transparently (almost) unified when the ArgsSupport module is
used to read startup arguments.

- Many improvements in the Simple... modules (SimpleGUI,

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012

SimpleScreens, SimpleMenus, SimpleGraphics, etc), but
considering their overall incompleteness and fluidity I moved
them into their own folder, "Experimental".

- new modules: BigInt, for 155 bit integers; IconSupport, for
writing out icons.

Aglet Modula-2 for AOS4 Release 3.2 13 Feb 2012
2008

 Section Head: Version_History
Release History - 2008

Oct 26, 2008

M2IDE - Fixed the intermittent, irritating, "broken PIPE" errors that
tended to show up in the IDE.

Aug 10, 2008

Compiler - v3.0 Beta0 (3.8.2008)

Documentation - Expanded, corrected, and supplied as a PDF file as well as
AmigaGuide.

M2IDE - Usability improvements in GUI.

Aglet Modules - small improvements in SimpleGUI and SimpleImageHandler
modules

- RTFWrite supports many more RTF constructs
- DynStr2B: new procedures dAddQuotes(), dRemoveQuotes().

July 5, 2008

- first one: v3.0 Alpha0 (22.6.2008)

ISO Modula-2 Syntax

Thanks to special permission of ISO/CS in Geneva, WG13 is allowed to make the
concrete syntax of Modula-2 and the text of all the definition modules in the standard
(ISO/IEC 10514-1) available.

compilation module =
 program module | definition module | implementation module ;

program module =
 "MODULE", module identifier, [interrupt protection], semicolon,
 import lists,
 module block, module identifier, period ;

module identifier =
 identifier ;

definition module =
 "DEFINITION", "MODULE", module identifier, semicolon,
 import lists, definitions,
 "END", module identifier, period ;

implementation module =
 "IMPLEMENTATION", "MODULE", module identifier,
 [interrupt protection], semicolon,
 import lists,
 module block, module identifier, period ;

interrupt protection =
 left bracket, protection expression, right bracket ;

protection expression =
 constant expression ;

module block =
 declarations, [module body], "END" ;

module body =
 initialization body, [finalization body] ;

initialization body =
 "BEGIN", block body ;

finalization body =
 "FINALLY", block body ;

block body =
 normal part, ["EXCEPT", exceptional part] ;

normal part =

ISO Modula-2 Syntax

 statement sequence ;

exceptional part =
 statement sequence ;

import lists =
 { import list } ;

import list =
 simple import | unqualified import ;

simple import =
 "IMPORT", identifier list, semicolon ;

unqualified import =
 "FROM", module identifier, "IMPORT", identifier list, semicolon ;

export list =
 unqualified export | qualified export ;

unqualified export =
 "EXPORT", identifier list, semicolon ;

qualified export =
 "EXPORT", "QUALIFIED", identifier list, semicolon ;

qualified identifier =
 { qualifying identifier, period }, identifier ;

qualifying identifier =
 module identifier ;

definitions =
 { definition } ;

definition =
 "CONST", { constant declaration, semicolon } |
 "TYPE", { type definition, semicolon } |
 "VAR", { variable declaration, semicolon } |
 procedure heading, semicolon ;

procedure heading =
 proper procedure heading | function procedure heading ;

type definition =
 type declaration | opaque type definition ;

opaque type definition =
 identifier ;

ISO Modula-2 Syntax

declarations =
 { declaration } ;

declaration =
 "CONST", { constant declaration, semicolon } |
 "TYPE", { type declaration, semicolon } |
 "VAR", { variable declaration, semicolon } |
 procedure declaration, semicolon |
 local module declaration, semicolon ;

constant declaration =
 identifier, equals, constant expression ;

type declaration =
 identifier, equals, type denoter ;

variable declaration =
 variable identifier list, colon, type denoter ;

variable identifier list =
 identifier, [machine address], { comma, identifier, [machine address] } ;

machine address =
 left bracket, value of address type, right bracket ;

value of address type =
 constant expression ;

procedure declaration =
 proper procedure declaration | function procedure declaration ;

proper procedure declaration =
 proper procedure heading, semicolon,
 (proper procedure block, procedure identifier | "FORWARD") ;

procedure identifier =
 identifier ;

proper procedure heading =
 "PROCEDURE", procedure identifier, [formal parameters] ;

formal parameters =
 left parenthesis, [formal parameter list], right parenthesis ;

formal parameter list =
 formal parameter, { semicolon, formal parameter } ;

proper procedure block =

ISO Modula-2 Syntax

 declarations, [procedure body], "END" ;

procedure body =
 "BEGIN", block body ;

function procedure declaration =
 function procedure heading, semicolon,
 (function procedure block, procedure identifier | "FORWARD") ;

function procedure heading =
 "PROCEDURE", procedure identifier, formal parameters,
 colon, function result type ;

function result type =
 type identifier ;

function procedure block =
 declarations, function body, "END" ;

function body =
 "BEGIN", block body ;

formal parameter =
 value parameter specification | variable parameter specification ;

value parameter specification =
 identifier list, colon, formal type ;

variable parameter specification =
 "VAR", identifier list, colon, formal type ;

local module declaration =
 "MODULE", module identifier, [interrupt protection], semicolon,
 import lists,
 [export list],
 module block, module identifier ;

type denoter =
 type identifier | new type ;

ordinal type denoter =
 ordinal type identifier | new ordinal type ;

type identifier =
 qualified identifier ;

ordinal type identifier =
 type identifier ;

ISO Modula-2 Syntax

new type =
 new ordinal type |
 set type |
 packedset type |
 pointer type |
 procedure type |
 array type |
 record type ;

new ordinal type =
 enumeration type | subrange type ;

enumeration type =
 left parenthesis, identifier list, right parenthesis ;

identifier list =
 identifier, { comma, identifier } ;

subrange type =
 [range type], left bracket, constant expression, ellipsis,
 constant expression, right bracket ;

range type =
 ordinal type identifier ;

set type =
 "SET", "OF", base type ;

base type =
 ordinal type denoter ;

packedset type =
 "PACKEDSET", "OF", base type ;

pointer type =
 "POINTER", "TO", bound type ;

bound type =
 type denoter ;

procedure type =
 proper procedure type | function procedure type ;

proper procedure type =
 "PROCEDURE",
 [left parenthesis, [formal parameter type list], right parenthesis] ;

function procedure type =
 "PROCEDURE", left parenthesis, [formal parameter type list],

ISO Modula-2 Syntax

 right parenthesis, colon, function result type ;

formal parameter type list =
 formal parameter type, { comma, formal parameter type } ;

formal parameter type =
 variable formal type | value formal type ;

variable formal type =
 "VAR", formal type ;

value formal type =
 formal type ;

formal type =
 type identifier | open array formal type ;

open array formal type =
 "ARRAY", "OF", open array component type ;

open array component type =
 formal type ;

array type =
 "ARRAY", index type, { comma, index type }, "OF", component type ;

index type =
 ordinal type denoter ;

component type =
 type denoter ;

record type =
 "RECORD", field list, "END" ;

field list =
 fields, { semicolon, fields } ;

fields =
 [fixed fields | variant fields] ;

fixed fields =
 identifier list, colon, field type ;

field type =
 type denoter ;

variant fields =
 "CASE", tag field, "OF", variant list, "END" ;

ISO Modula-2 Syntax

tag field =
 [tag identifier], colon, tag type ;

tag identifier =
 identifier ;

tag type =
 ordinal type identifier ;

variant list =
 variant, { case separator, variant },
 [variant else part] ;

variant else part =
 "ELSE", field list ;

variant =
 [variant label list, colon, field list] ;

variant label list =
 variant label, { comma, variant label } ;

variant label =
 constant expression, [ellipsis, constant expression] ;

statement =
 empty statement |
 assignment statement |
 procedure call |
 return statement |
 retry statement |
 with statement |
 if statement |
 case statement |
 while statement |
 repeat statement |
 loop statement |
 exit statement |
 for statement ;

statement sequence =
 statement, { semicolon, statement } ;

empty statement =
 ;

assignment statement =
 variable designator, assignment operator, expression ;

ISO Modula-2 Syntax

procedure call =
 procedure designator, [actual parameters] ;

procedure designator =
 value designator ;

actual parameters =
 left parenthesis, [actual parameter list], right parenthesis ;

actual parameter list =
 actual parameter, { comma, actual parameter } ;

actual parameter =
 variable designator | expression | type parameter ;

type parameter =
 type identifier ;

return statement =
 simple return statement | function return statement ;

simple return statement =
 "RETURN" ;

function return statement =
 "RETURN", expression ;

retry statement =
 "RETRY" ;

with statement =
 "WITH", record designator, "DO", statement sequence, "END" ;

record designator =
 variable designator | value designator ;

if statement =
 guarded statements, [if else part], "END" ;

guarded statements =
 "IF", boolean expression, "THEN", statement sequence,
 { "ELSIF", boolean expression, "THEN", statement sequence } ;

if else part =
 "ELSE", statement sequence ;

boolean expression =
 expression ;

ISO Modula-2 Syntax

case statement =
 "CASE", case selector, "OF", case list, "END" ;

case selector =
 ordinal expression ;

case list =
 case alternative, { case separator, case alternative }, [case else part] ;

case else part =
 "ELSE", statement sequence ;

case alternative =
 [case label list, colon, statement sequence] ;

case label list =
 case label, { comma, case label } ;

case label =
 constant expression, [ellipsis, constant expression] ;

while statement =
 "WHILE", boolean expression, "DO", statement sequence, "END" ;

repeat statement =
 "REPEAT", statement sequence, "UNTIL", boolean expression ;

loop statement =
 "LOOP", statement sequence, "END" ;

exit statement =
 "EXIT" ;

for statement =
 "FOR", control variable identifier, assignment operator, initial value,
 "TO", final value,
 ["BY", step size],
 "DO",
 statement sequence, "END" ;

control variable identifier =
 identifier ;

initial value =
 ordinal expression ;

final value =
 ordinal expression ;

ISO Modula-2 Syntax

step size =
 constant expression ;

variable designator =
 entire designator |
 indexed designator |
 selected designator |
 dereferenced designator ;

entire designator =
 qualified identifier ;

indexed designator =
 array variable designator,
 left bracket, index expression, { comma, index expression },
 right bracket ;

array variable designator =
 variable designator ;

index expression =
 ordinal expression ;

selected designator =
 record variable designator, period, field identifier ;

record variable designator =
 variable designator ;

field identifier =
 identifier ;

dereferenced designator =
 pointer variable designator, dereferencing operator ;

pointer variable designator =
 variable designator ;

expression =
 simple expression, [relational operator, simple expression] ;

simple expression =
 [sign], term, { term operator, term } ;

term =
 factor, { factor operator, factor } ;

factor =

ISO Modula-2 Syntax

 left parenthesis, expression, right parenthesis |
 logical negation operator, factor |
 value designator |
 function call |
 value constructor |
 constant literal ;

relational operator =
 equals operator |
 inequality operator |
 less than operator |
 greater than operator |
 less than or equal operator |
 subset operator |
 greater than or equal operator |
 superset operator |
 set membership operator ;

term operator =
 plus operator |
 set union operator |
 minus operator |
 set difference operator |
 logical disjunction operator |
 string catenate symbol ;

factor operator =
 multiplication operator |
 set intersection operator |
 division operator |
 symmetric set difference operator |
 rem operator |
 div operator |
 mod operator |
 logical conjunction operator ;

value designator =
 entire value |
 indexed value |
 selected value |
 dereferenced value ;

entire value =
 qualified identifier ;

indexed value =
 array value, left bracket,
 index expression, { comma, index expression },
 right bracket ;

ISO Modula-2 Syntax

array value =
 value designator ;

selected value =
 record value, period, field identifier ;

record value =
 value designator ;

dereferenced value =
 pointer value, dereferencing operator ;

pointer value =
 value designator ;

function call =
 function designator, actual parameters ;

function designator =
 value designator ;

value constructor =
 array constructor | record constructor | set constructor ;

array constructor =
 array type identifier, array constructed value ;

array type identifier =
 type identifier ;

array constructed value =
 left brace, repeated structure component,
 { comma, repeated structure component },
 right brace ;

repeated structure component =
 structure component, ["BY", repetition factor] ;

repetition factor =
 constant expression ;

structure component =
 expression |
 array constructed value |
 record constructed value |
 set constructed value ;

record constructor =

ISO Modula-2 Syntax

 record type identifier, record constructed value ;

record type identifier =
 type identifier ;

record constructed value =
 left brace,
 [structure component, { comma, structure component }],
 right brace ;

set constructor =
 set type identifier, set constructed value ;

set type identifier =
 type identifier ;

set constructed value =
 left brace, [member, { comma, member }], right brace ;

member =
 interval | singleton ;

interval =
 ordinal expression, ellipsis, ordinal expression ;

singleton =
 ordinal expression ;

constant literal =
 whole number literal |
 real literal |
 string literal ;

ordinal expression =
 expression ;

constant expression =
 expression ;

assignment operator = as defined in the Lexis, section 5
case separator = as defined in the Lexis, section 5
colon = as defined in the Lexis, section 5
comma = as defined in the Lexis, section 5
dereferencing operator = as defined in the Lexis, section 5
div operator = as defined in the Lexis, section 5
division operator = as defined in the Lexis, section 5
ellipsis = as defined in the Lexis, section 5
equals = as defined in the Lexis, section 5
equals operator = as defined in the Lexis, section 5

ISO Modula-2 Syntax

greater than operator = as defined in the Lexis, section 5
greater than or equal operator = as defined in the Lexis, section 5
identifier = as defined in the Lexis, section 5
inequality operator = as defined in the Lexis, section 5
left brace = as defined in the Lexis, section 5
left bracket = as defined in the Lexis, section 5
left parenthesis = as defined in the Lexis, section 5
less than operator = as defined in the Lexis, section 5
less than or equal operator = as defined in the Lexis, section 5
logical conjunction operator = as defined in the Lexis, section 5
logical disjunction operator = as defined in the Lexis, section 5
logical negation operator = as defined in the Lexis, section 5
minus operator = as defined in the Lexis, section 5
mod operator = as defined in the Lexis, section 5
multiplication operator = as defined in the Lexis, section 5
period = as defined in the Lexis, section 5
plus operator = as defined in the Lexis, section 5
real literal = as defined in the Lexis, section 5
rem operator = as defined in the Lexis, section 5
right brace = as defined in the Lexis, section 5
right bracket = as defined in the Lexis, section 5
right parenthesis = as defined in the Lexis, section 5
semicolon = as defined in the Lexis, section 5
set difference operator = as defined in the Lexis, section 5
set intersection operator = as defined in the Lexis, section 5
set membership operator = as defined in the Lexis, section 5
set union operator = as defined in the Lexis, section 5
sign = as defined in the Lexis, section 5
string catenate symbol = as defined in the Lexis, section 5
string literal = as defined in the Lexis, section 5
subset operator = as defined in the Lexis, section 5
superset operator = as defined in the Lexis, section 5
symmetric set difference operator = as defined in the Lexis, section 5
whole number literal = as defined in the Lexis, section 5

	Aglet Modula-2 PPC
	Aglet Modula-2 PPC Overview
	Aglet M2 Requirements
	Aglet M2 Installation
	The Modula-2 Language
	Modula-2 Description
	Modula-2 Syntax
	Module Consistency
	Link-time Inconsistency
	Circular Import Inconsistency
	Module Initializations and Terminations
	Exceptions Support
	ISO Modula-2 Standard
	ISO Standard Libraries
	ISO Examples
	Object-Oriented Extensions
	Some Web Links for Modula-2 Info

	Aglet Implementation
	M2 Compiler
	Compiler Switches
	Compiler Pragmas
	Amiga Library Calls
	Library Auto-Open
	Static C Library Calls
	Dynamic ".so" C Library Calls
	Low Level Information
	Amiga Object File Linking
	Tools
	AgletM2 Support Modules
	Amiga Library Definition Modules
	Reaction Definition Modules
	Aglet Sysmod Library
	Aglet Experimental Mods
	SimpleGUI Module
	SimpleGraphics Module
	Amiga Specific Info
	Language and Compiler Tips
	Debugging Tips
	Some Example and Test Programs

	IDE Tutorial
	Integrated Development Environment
	M2IDE
	Using IDE
	M2IDE Project Window
	M2IDE Name List Window
	M2IDE BuildPrefs Window
	M2IDE Logger Window
	M2IDE Text Search Window
	Project Menu
	Settings Menu
	Tools Menu
	M2IDE Other Info

	Release History - Current
	ISO Modula-2 Syntax

